首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of three superheated drop detectors with different neutron energy responses was developed to evaluate dose-equivalent and energy distributions of photoneutrons in a phantom irradiated by radiotherapy high-energy x-ray beams. One of the three detectors measures the total neutron dose equivalent and the other two measure the contributions from fast neutrons above 1 and 5.5 MeV, respectively. In order to test the new method, the neutron field produced by the 10 cm X 10 cm x-ray beam of an 18 MV radiotherapy accelerator was studied. Measurements were performed inside a tissue-equivalent liquid phantom, at depths of 1, 5, 10 and 15 cm and at lateral distances of 0, 10, and 20 cm from the central axis. These data were used to calculate the average integral dose to the radiotherapy patient from direct neutrons as well as from neutrons transmitted through the accelerator head. The characteristics of the dosimeters were confirmed by results in excellent agreement with those of prior studies. Track etch detectors were also used and provided an independent verification of the validity of this new technique. Within the primary beam, we measured a neutron entrance dose equivalent of 4.5 mSv per Gy of photons. It was observed that fast neutrons above 1 MeV deliver most of the total neutron dose along the beam axis. Their relative contribution increases with depth, from about 60% at the entrance to over 90% at a depth of 10 cm. Thus, the average energy increases with depth in the phantom as neutron spectra harden.  相似文献   

2.
Boron neutron capture enhancement (BNCE) of the fast neutron irradiations use thermal neutrons produced in depth of the tissues to generate neutron capture reactions on 10B within tumor cells. The dose enhancement is correlated to the 10B concentration and to thermal neutron flux measured in the depth of the tissues, and in this paper we demonstrate the feasibility of Monte Carlo simulation to study the dosimetry of BNCE. The charged particle FLUKA code has been used to calculate the primary neutron yield from the beryllium target, while MCNP-4A has been used for the transport of these neutrons in the geometry of the Biomedical Cyclotron of Nice. The fast neutron spectrum and dose deposition, the thermal flux and thermal neutron spectrum in depth of a Plexiglas phantom has been calculated. The thermal neutron flux has been compared with experimental results determined with calibrated thermoluminescent dosimeters (TLD-600 and TLD-700, respectively, doped with 6Li or 7Li). The theoretical results were in good agreement with the experimental results: the thermal neutron flux was calculated at 10.3 X 10(6) n/cm2 s1 and measured at 9.42 X 10(6) n/cm2 s1 at 4 cm depth of the phantom and with a 10 cm X 10 cm irradiation field. For fast neutron dose deposition the calculated and experimental curves have the same slope but different shape: only the experimental curve shows a maximum at 2.27 cm depth corresponding to the build-up. The difference is due to the Monte Carlo simulation which does not follow the secondary particles. Finally, a dose enhancement of, respectively, 4.6% and 10.4% are found for 10 cm X 10 cm or 20 cm X 20 cm fields, provided that 100 micrograms/g of 10B is loaded in the tissues. It is anticipated that this calculation method may be used to improve BNCE of fast neutron irradiations through collimation modifications.  相似文献   

3.
Experimental data related to the dosimetric characteristics of Ir-192 brachytherapy sources are limited. The aim of this work was to obtain the dosimetry functions required by the American Association of Physicists in Medicine Task Group 43 for both a low and a high dose-rate iridium-192 brachytherapy source through dose measurements in a water-equivalent phantom. Dose measurements have been performed using lithium fluoride thermoluminescent detectors positioned in a polystyrene phantom at distances from the source that vary from 1 to 10 cm, with 1 cm intervals, and at angles that vary from 0 degree to 170 degrees with 10 degrees intervals. The anisotropy functions, radial dose functions, and dose rate constants were determined for both brachytherapy sources. The precision of results obtained on those relatively fine intervals of angles and distances provides clinics with the possibility to use and interpolate the complete data sets for treatment planning.  相似文献   

4.
Small-field and stereotactic radiosurgery (SRS) dosimetry with radiation detectors, used for clinical practice, have often been questioned due to the lack of lateral electron equilibrium and uncertainty in beam energy. A dosimetry study was performed for a dedicated 6 MV SRS unit, capable of generating circular radiation fields with diameters of 1.25-5 cm at isocentre using the BEAM/EGS4 Monte Carlo code. With this code the accelerator was modelled for radiation fields with a diameter as small as 0.5 cm. The radiation fields and dosimetric characteristics (photon spectra, depth doses, lateral dose profiles and cone factors) in a water phantom were evaluated. The cone factor (St) for a specific cone c at depth d is defined as St(d, c) = D(d, c)/D(d, c(ref)), where c(ref) is the reference cone. To verify the Monte Carlo calculations, measurements were performed with detectors commonly used in SRS such as small-volume ion chambers, a diamond detector, TLDs and films. Results show that beam energies vary with cone diameter. For a 6 MV beam, the mean energies in water at the point of maximum dose for a 0.5 cm cone and a 5 cm cone are 2.05 MeV and 1.65 MeV respectively. The values of St obtained by the simulations are in good agreement with the results of the measurements for most detectors. When the lateral resolution of the detectors is taken into account, the results agree within a few per cent for most fields and detectors. The calculations showed a variation of St with depth in the water. Based on calculated electron spectra in water, the validity of the assumption that measured dose ratios are equal to measured detector readings was verified.  相似文献   

5.
PURPOSE: A new technique is presented for in vivo measurements of the dose equivalent from photoneutrons produced by high-energy radiotherapy accelerators. METHODS AND MATERIALS: The dosimeters used for this purpose are vials of superheated halocarbon droplets suspended in a tissue-equivalent gel. Neutron interactions nucleate the formation of bubbles, which can be recorded through the volume of gel they displace from the detector vials into graduated pipettes. These detectors offer inherent photon discrimination, dose-equivalent response to neutrons, passive operation, and small sensitive size. An in vivo vaginal probe was fabricated containing one of these neutron detector vials and a photon-sensitive diode. Measurements were carried out in patients undergoing high-energy x-ray radiotherapy and were also repeated in-phantom, under similar irradiation geometries. RESULTS AND CONCLUSION: Neutron doses of 0.02 Sv were measured in correspondence to the cervix, 50 cm from the photon beam axis, following a complete treatment course of 46.5 Gy with an upper mantle field of 18-MV x-rays. This fraction of dose from neutrons is measured reliably within an intense photon background, making the technique a valid solution to challenging dosimetry problems such as the determination of fetal exposure in radiotherapy. These measurements can be easily carried out with tissue-equivalent phantoms, as our results indicate an excellent correlation between in vivo and in-phantom dosimetry.  相似文献   

6.
Two acrylic cube phantoms have been constructed for BNCT applications that allow the depth distribution of neutrons to be measured with miniature 10BF3 detectors in 0.5-cm steps beginning at 1-cm depth. Sizes and weights of the cubes are 14 cm, 3.230 kg, and 11 cm, 1.567 kg. Tests were made with the epithermal neutron beam from the patient treatment port of the Brookhaven Medical Research Reactor. Thermal neutron depth profiles were measured with a bare 10BF3 detector at a reactor power of 50 W, and Cd-covered detector profiles were measured at a reactor power of 1 kW. The resulting plots of counting rate versus depth illustrate the dependence of neutron moderation on the size of the phantom. But more importantly the data can serve as benchmarks for testing the thermal and epithermal neutron profiles obtained with accelerator-based BNCT facilities. Such tests could be made with these phantoms at power levels about five orders of magnitude lower than that required for the treatment of patients with brain tumors.  相似文献   

7.
Dose rates in a phantom around a shielded and an unshielded vaginal applicator containing Selectron low-dose-rate 137Cs sources were determined by experiment and Monte Carlo simulation. Measurements were performed with thermoluminescent dosimeters in a white polystyrene phantom using an experimental protocol geared for precision. Calculations for the same set-up were done using a version of the EGS4 Monte Carlo code system modified for brachytherapy applications into which a new combinatorial geometry package developed by Bielajew was recently incorporated. Measured dose rates agree with Monte Carlo estimates to within 5% (1 SD) for the unshielded applicator, while highlighting some experimental uncertainties for the shielded applicator. Monte Carlo calculations were also done to determine a value for the effective transmission of the shield required for clinical treatment planning, and to estimate the dose rate in water at points in axial and sagittal planes transecting the shielded applicator. Comparison with dose rates generated by the planning system indicates that agreement is better than 5% (1 SD) at most positions. The precision thermoluminescent dosimetry protocol and modified Monte Carlo code are effective complementary tools for brachytherapy applicator dosimetry.  相似文献   

8.
In this paper, the consistency of kilovoltage (tube potentials between 40 and 300 kV) x-ray beam dosimetry using the "in-air" method and the in-phantom measurement has been studied. The procedures for the measurement of the central-axis depth-dose curve, which serve as a link between the dose at the reference depth to the dose elsewhere in a phantom, were examined. The uncertainties on the measured dose distributions were analyzed with the emphasis on the surface dose measurement. The Monte Carlo method was used to calculate the perturbation correction factors for a photon diode and a NACP plane-parallel ionization chamber at different depths in a water phantom irradiated by 100-300 kV (2.43 mm Al-3.67 mm Cu half-value layer) x-ray beams. The depth-dose curves measured with these two detectors, after correcting for the perturbation effect (up to 15% corrections), agreed with each other to within 1.5%. Comparisons of the doses at the phantom surface and at 2 cm depth in water for photon beams of 100-300 kV tube potential obtained using the "backscatter" method and those using the "in-phantom" measurement have shown that the "in-air" method can be equally applied to this energy range if the depth-dose curve can be measured accurately. To this end, measured depth ionization curves require depth-dependent correction factors.  相似文献   

9.
An ionometric calibration procedure for 192Ir PDR brachytherapy sources in terms of dose rate to water is presented. The calibration of the source is performed directly in a water phantom at short distances (1.0, 2.5 and 5.0 cm) using an NE2571 Farmer type ion chamber. To convert the measured air-kerma rate in water to dose rate to water a conversion factor (CF) was calculated by adapting the medium-energy x-ray dosimetry protocol for a point source geometry (diverging beam). The obtained CF was verified using two different methods. Firstly, the CF was calculated by Monte Carlo simulations, where the source-ionization chamber geometry was modelled accurately. In a second method, a combination of Monte Carlo simulations and measurements of the air-kerma rate in water (at 1.0, 2.5 and 5.0 cm distance) and in air (1 m distance) was used to determine the CF. The obtained CFs were also compared with conversion factors calculated with the adapted dosimetry protocol for high-energy photons introduced by T?lli. All calculations were done for a Gammamed PDR 192Ir source-NE2571 chamber geometry. The conversion factors obtained with the four different methods agree to within 1% at the three distances of interest. We obtained the following values (medium-energy x-ray protocol): CF(1 cm) = 1.458; CF(2.5 cm) = 1.162; CF(5.0 cm) = 1.112 (1 sigma = 0.7% for the three distances of interest). The obtained results were checked with TLD measurements. The values of the specific dose rate constant and the radial dose function calculated in this work are in accordance with the literature data.  相似文献   

10.
PURPOSE: Metal oxide semiconductor field-effect transistor (MOSFET) detectors were calibrated to perform in vivo dosimetry during 6-MV treatments, both in normal setup and total body irradiation (TBI) conditions. METHODS AND MATERIALS: MOSFET water-equivalent depth, dependence of the calibration factors (CFs) on the field sizes, MOSFET orientation, bias supply, accumulated dose, incidence angle, temperature, and spoiler-skin distance in TBI setup were investigated. MOSFET reproducibility was verified. The correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was studied. MOSFET midplane dosimetry in TBI setup was compared with thermoluminescent dosimetry in an anthropomorphic phantom. By using ionization chamber measurements, the TBI midplane dosimetry was also verified in the presence of cork as a lung substitute. RESULTS: The water-equivalent depth of the MOSFET is about 0.8 mm or 1.8 mm, depending on which sensor side faces the beam. The field size also affects this quantity; Monte Carlo simulations allow driving this behavior by changes in the contaminating electron mean energy. The CFs vary linearly as a function of the square field side, for fields ranging from 5 x 5 to 30 x 30 cm2. In TBI setup, varying the spoiler-skin distance between 5 mm and 10 cm affects the CFs within 5%. The MOSFET reproducibility is about 3% (2 SD) for the doses normally delivered to the patients. The effect of the accumulated dose on the sensor response is negligible. For beam incidence ranging from 0 degrees to 90 degrees, the MOSFET response varies within 7%. No monotonic correlation between the sensor response and the temperature is apparent. Good correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was found (the correlation coefficient is about 1). The MOSFET midplane dosimetry relevant to the anthropomorphic phantom irradiation is in agreement with TLD dosimetry within 5%. Ionization chamber and MOSFET midplane dosimetry in inhomogeneous phantoms are in agreement within 2%. CONCLUSION: MOSFET characteristics are suitable for the in vivo dosimetry relevant to 6-MV treatments, both in normal and TBI setup. The TBI midplane dosimetry using MOSFETs is valid also in the presence of the lung, which is the most critical organ, and allows verifying that calculation of the lung attenuator thicknesses based only on the density is not correct. Our MOSFET dosimetry system can be used also to determine the surface dose by using the water-equivalent depth and extrapolation methods. This procedure depends on the field size used.  相似文献   

11.
Cylindrical ionization chambers produce perturbations (gradient and fluence) in the medium, and hence the point of measurement is not accurately defined in electron beam dosimetry. The gradient perturbation is often corrected by a shift method depending on the type of ion chamber. The shift is in the range of 0.33-0.85 times the inner radius (r) of the ion chamber, upstream from the centre of the chamber, depending upon the dosimetry protocol. This variation in shift causes the surface dose to be uncertain due to the high dose gradient. An investigation was conducted to estimate the effective point of measurement of cylindrical ion chambers in electron beams. Ionization measurements were taken with the ion chamber in air and in a phantom at source to chamber distances of <100 cm and >100 cm respectively. The data in air and in the phantom were fitted with the inverse square and electron depth dose functions, respectively. The intersection of the two functions provides an accurate estimate of the ion chamber shift and the surface dose. Our results show that the shift correction for an ion chamber is energy dependent. The measured shifts vary from 0.9r to 0.5r between 6 MeV and 20 MeV beams respectively. The surface dose measured with the ion chambers and mathematically determined values are in agreement to within 3%. The method presented in this report is unambiguous, fast and reliable for the estimation of surface dose and the shift needed in electron beam dosimetry.  相似文献   

12.
Since 1978 the Essen Medical Cyclotron Facility has been used for fast neutron therapy. The treatment of deep-seated tumours by d(14) + Be neutron beam therapy (mean energy = 5.8 MeV) is still limited because of the steep decrease in depth-dose distribution. The interactions of fast neutrons in tissue leads to a thermal neutron distribution. These partially thermalized neutrons can be used to produce neutron capture reactions with 10B. Thus incorporation of 10B in tumours treated with fast neutrons will increase the relative local tumour dose due to the reaction 10B (n, alpha) 7Li. The magnitude of dose enhancement by 10B depends on the distribution of the thermal neutron fluence, 10B concentration, field size of the neutron beam, beam energy and the specific phantom geometry. The slowing down of the fast neutrons, resulting in a thermal neutron distribution in a phantom, has been computed using a Monte Carlo model. This model, which includes a deep-seated tumour, was experimentally verified by measurements of the thermal neutron fluence rate in a phantom using neutron activation of gold foil. When non-boronated water phantoms were irradiated with a total dose of 1 Gy at a depth of 6 cm, the thermal fluencies at this depth were found to be 2 x 10(10) cm-2. The absorbed dose in a tumour with 100 ppm 10B, at the same depth, was enhanced by 15%.  相似文献   

13.
We have performed extensive computational and experimental dosimetry of the Henschke applicator with respect to high dose-rate 192Ir brachytherapy using a GAMMAMED remote afterloader. Our goal was to generate clinically useful two- and three-dimensional look-up tables. Dose measurements of the Henschke applicator involved using TLD chips placed in a polystyrene phantom. Monte Carlo simulations were performed using the MCNP code. The computational models included the detailed geometry of 192Ir source, tandem tube, and shielded ovoid. The measured dose rates were corrected for the dependence of TLD sensitivity on the distance of measurement points from the source. Transit dose delivered during source extension to and retraction from a given dwell position was estimated by Monte Carlo simulations, and a correction was applied to the experimental values. For the applicator tandem, the ratio of dose rates obtained by MCNP to those measured by TLD chips ranges from 0.92 to 1.10 with an average of 0.98 and a standard deviation of 0.02. The measured and calculated dose rates at 1 cm on the transverse axis are 1.10 cGy U-1 h-1. For the shielded ovoid, the ratio ranges from 0.88 to 1.16 with an average of 1.00 and a standard deviation of 0.07. Causes of the discrepancy between the Monte Carlo and TLD results were identified. We found that the combined uncertainty of measured dose rates due to these causes is 5.6% for the applicator tandem and 8.4% for the shielded ovoid. Therefore, the results of the Monte Carlo simulation are considered to have been validated by the measurements within the uncertainty involved in the calculation and measurements.  相似文献   

14.
Rhenium-186 is a beta-emitting radionuclide that has been studied for applications in radioimmunotherapy. Its 137 keV gamma photon is ideal for imaging the biodistribution of the immunoconjugates and for obtaining gamma camera data for estimation of dosimetry. Methods used for determining radiation absorbed dose are described. We have estimated absorbed dose to normal organs and tumors following administration of two different 186Re-labeled immunoconjugates, intact NR-LU-10 antibody and the F(ab')2 fragment of NR-CO-02. Tumor dose estimates in 46 patients varied over a wide range, 0.4-18.6 rads/mCi, but were similar in both studies. Accuracy of activity estimates in superficial tumors was confirmed by biopsy. Prediction of 186Re dosimetry from a prior 99mTc imaging study using a tracer dose of antibody was attempted in the NR-CO-02 (Fab')2 study. Although 99mTc was an accurate predictor of tumor localization and the mean predicted and observed radiation absorbed doses to normal organs compared favorably, 186Re dosimetry could not be reliably predicted in individual patients. The methods described nevertheless provide adequate estimates of 186Re dosimetry to tumor and normal organs.  相似文献   

15.
16.
This paper discusses measurements carried out at CERN in the stray radiation field produced by 158 GeV c(-1) per nucleon 208Pb82+ ions. The purpose was to test and intercompare the response of several detectors, mainly neutron measuring devices, and to determine the neutron spectral fluence as well as the microdosimetric (absorbed dose and dose equivalent) distributions in different locations around the shielding. Both active instruments and passive dosimeters were employed, including different types of Andersson-Braun rem counters, a tissue equivalent proportional counter, a set of superheated drop detectors, a Bonner sphere system, and different types of ion chambers. Activation measurements with 12C plastic scintillators and with 32S pellets were also performed to assess the neutron yield of high energy lead ions interacting with a thin gold target. The results are compared with previous measurements and with measurements made during proton runs.  相似文献   

17.
A prototype in vivo total body composition analyser has been constructed for determining the total body contents of nitrogen (TBN), carbon (TBC) and oxygen (TBO) in young experimental animals such as sheep or pigs by 14 MeV neutron activation using a commercially available associated particle sealed tube neutron generator (APSTNG). The instrument was calibrated by scanning phantoms of different sizes in the mass range 10-36 kg, filled with a mixture of elements as found in a normal human body. Good agreement was found between the measured and expected values of N, O and C when two phantoms of similar dimensions but of different composition were scanned. With four 15 cm x 15 cm cross section and 45 cm long NaI(T1) gamma detectors and a radiation dose of approximately 20 microSv due to neutrons, the expected precisions for a 28 kg animal, CV% (based on counting statistics) are N: 9.3, C: 2.3 and O: 1.4.  相似文献   

18.
BACKGROUND: In order to estimate the somatic and genetic risk associated with a non-coplanar linac-based radiation technique of the pituitary gland, systematic secondary-dose measurements in a phantom and sample measurements of the dose near critical organs of patients were performed. PATIENTS AND METHODS: For measurements of the dose outside the primary radiation field an acrylic-PVC phantom was used which was irradiated with a single field (4 x 4 cm2). Eight patients with pituitary tumors were treated isocentrically with a combination of sagittal and transverse rotational arcs. To measure the dose in critical organs. LiF thermoluminescence dosimeters (TLD) in chip form were placed onto 1 eyelid, the skin over the thyroid, and the patient's clothes covering the region of breasts and ovaries of female patients and the testicles of male patients. Measurements were performed for all patients during 1 sagittal irradiation and for the majority of patients during 1 transverse irradiation. RESULTS: The phantom measurements demonstrated that the secondary dose measured on the patients surface can be considered as a good approximation for the dose in adjacent organs. The median dose in critical organs for sagittal irradiation was in the range of 25.8 mGy (eyes) to 1.9 mGy (testicles), and for transverse irradiation in the range of 23.3 mGy (eyes) to 1.3 mGy (testicles). The ratio of median organ doses for sagittal and transverse irradiation was 2.1 for the thyroid gland, 1.1 for the eyes, and 1.5 for the other organs. CONCLUSIONS: The dose in critical organs due to non-coplanar irradiation of the pituitary gland is only a small fraction of the dose delivered to the reference point of the planning target volume. The risk of a radiation-induced tumor and a genetic consequence associated with these small doses is generally less than 1% and 0.1%, respectively.  相似文献   

19.
The proportional counter microdosimetric technique has been employed to quantify variations in the quality of a d(48.5)+Be fast neutron beam passing through a homogeneous water phantom. Single event spectra have been measured as a function of spatial location in the water phantom and field size. The measured spectra have been separated into component spectra corresponding to the gamma, recoil proton and alpha plus heavy recoil ion contribution to the total absorbed dose. The total absorbed dose normalized to the "monitor units" used in daily clinical use has been calculated from the measured spectra and compared to the data measured with calibrated ion chambers. The present measurements agree with the ion chamber data to within 5%. The RBE of the neutron beam is assumed to be proportional to the microdosimetric parameter y* for the dose ranges pertinent to fractionated neutron therapy. The relative variations in y*, assumed to be representative of variations in the RBE are mapped as a function of field size and spatial location in the phantom. A variation in the RBE of about 4% for points within and 8% for points outside a 10 cm x 10 cm field is observed. The variations in the RBE within the beam are caused by an increase in the gamma component with depth. An increase in the RBE of about 4% is observed with increasing field size which is attributed to a change in the neutron spectrum. Compared to the uncertainties in the prescribed dose, associated with uncertainties in the clinically used RBE, variation in the RBE between various tissues, and other dosimetric uncertainties caused by factors such as patient inhomogeneities, patient setup errors, patient motion, etc., the measured spatial RBE variations are not considered significant enough to be incorporated into the treatment planning scheme.  相似文献   

20.
The Monte Carlo computer code MCNP (version 4A) has been used to develop a personal computer-based model of the Swansea in vivo neutron activation analysis (IVNAA) system. The model included specification of the neutron source (252Cf), collimators, reflectors and shielding. The MCNP model was 'benchmarked' against fast neutron and thermal neutron fluence data obtained experimentally from the IVNAA system. The Swansea system allows two irradiation geometries using 'short' and 'long' collimators, which provide alternative dose rates for IVNAA. The data presented here relate to the short collimator, although results of similar accuracy were obtained using the long collimator. The fast neutron fluence was measured in air at a series of depths inside the collimator. The measurements agreed with the MCNP simulation within the statistical uncertainty (5-10%) of the calculations. The thermal neutron fluence was measured and calculated inside the cuboidal water phantom. The depth of maximum thermal fluence was 3.2 cm (measured) and 3.0 cm (calculated). The width of the 50% thermal fluence level across the phantom at its mid-depth was found to be the same by both MCNP and experiment. This benchmarking exercise has given us a high degree of confidence in MCNP as a tool for the design of IVNAA systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号