首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We herein report on an iontronic device to drive and control Aβ1‐40 and Aβ1‐42 fibril formation. This system allows kinetic control of Aβ aggregation by regulation of H+ flows. The formed aggregates show both nanometer‐sized fibril structure and microscopic growth, thus mimicking senile plaques, at the H+‐outlet. Mechanistically we observed initial accumulation of Aβ1‐40 likely driven by electrophoretic migration which preceded nucleation of amyloid structures in the accumulated peptide cluster.

  相似文献   


2.
Suitable membranes for blood‐contacting medical applications need to be resistant in confrontation with blood proteins and cells, while possessing high blood compatibility and permeability at the same time. Herein, an overview of the recent advances and strategies that have been used to enhance the hemocompatibility of polymeric membranes is provided. The review focuses on two modification strategies: (i) physical modifications and (ii) chemical modifications. It also highlights the current progress in the design of hemocompatible‐functionalized membranes for biomedical applications. Subsequently, the commonly applied biocompatibility tests are also discussed and finally the future perspectives of the application of polymeric membranes in the biomedical field are presented.

  相似文献   


3.
Hydrophobic and super‐hydrophobic materials have many important applications, but most of the artificially hydrophobic and super‐hydrophobic surfaces suffer from poor durability. Herein, a facile method is reported to fabricate robust hydrophobic and super‐hydrophobic polymer films through backfilling the silica colloidal crystal templates with the mixture of fluoropolymer, thermoset hydroxyl acrylate resins, and curing agent. After removal of the template, 3D ordered porous structures are obtained. The obtained polymer films have not only excellent hydrophobic or super‐hydrophobic properties but also good stability against temperatures, acids, and alkalis. Dual ordered porous structure can obviously enhance the hydrophobicity of polymer films compared to unitary one.

  相似文献   


4.
Silicone‐based elastomers are promising materials for future dielectric elastomer actuators. To ensure optimum performance and the long‐term reliability of the actuators, it is essential to gain a fundamental understanding of the correlation between the elastomer's network structure and the mechanical and electrical responses of the material. For this purpose, mechanical and electrical tests are performed on a series of silicone elastomer films with different crosslinking densities, which are prepared by changing the stoichiometric imbalance of the network. It is determined that higher cross‐linking density leads to a higher elastic modulus and a longer fatigue lifetime, whereas reduced permittivity is observed because of lower chain mobility. Dielectric breakdown strength is also observed to increase in line with increasing cross‐linking density, and the variations in relation to the measured elastic modulus and permittivity agree well with the Stark–Garton model based on electromechanical instability.

  相似文献   


5.
Barrier membranes used for the treatment of bone tissue defects caused by periodontitis lack the ability to promote new bone tissue regeneration. However, the addition of an osteogenic component to membranes may enhance their regenerative potential. Here the manufacturing of composite membranes made of poly(caprolactone) and strontium‐substituted bioactive glass is described using the solution‐electrospinning technique, with particles located both inside and on the surface of the fibers. All membranes are characterized using scanning electron microscopy and energy dispersive X‐ray spectroscopy, and glass dissolution from within the fibers is investigated in water. In vitro material cytotoxicity is determined using a rat osteosarcoma cell line. Electrospun fibers exhibit porous surfaces and regions of increased diameter where the particles are accumulated. The glass dissolves after immersion in water, releasing dissolution products that are associated with increased pH. Further evidence suggests accelerated polymer degradation due to interactions between both components, which may provide the additional benefit of reducing the pH changes associated with glass dissolution. All compositions are biocompatible in vitro, with the exception of membranes with >50 μg of glass on their surface. In conclusion, these membranes show great potential for bone healing applications, including guided bone regeneration and scaffolds for musculoskeletal tissue engineering.

  相似文献   


6.
Three different dopants are used to fabricate electrospun dopants/polystyrene (dopants/PS) composite fibers from PS solution and PS sol. The relative humidity and the influence of the dopants on the morphologies, diameter, porous structures, and dopant distribution of electrospun PS fibers are investigated. Compared to those obtained from PS solution, electrospun dopants/PS composite fibers from PS sol with hollow‐porous and multichannel hollow‐porous structures present significant advantages due to the multi‐stage degree of interfacial structure and diversity of the internal environment. In comparison to coaxial electrospun PS fibers, the electrospun dopants/PS composite fibers from PS sol obtained in one step have an improved yield and a simplified technological process simultaneously, leading to significant competitiveness in fields such as catalysis, fluidics gas storage, and sensing.

  相似文献   


7.
In this study, a facile method about generating porous poly (l ‐lactide) (PLLA) materials with uniform morphology by gradual precipitation is reported. By adjusting the solvents, concentrations of polymer solution, and drying process, petal‐like PLLA nanosheets can be conveniently obtained, which can further form porous materials with tunable porosities (85–92%). X‐ray diffraction affirms that α‐form crystals of PLLA with high crystallinity (51.66% according to differential scanning calorimetry) can be obtained. Mechanical test shows that the compression modulus is tunable with values ranging from 1.76 to 19.98 MPa. Notably, because of its high porosity, interconnected pore structure, and tunable mechanical properties, these versatile porous materials are especially fit for being utilized in polymer scaffold field.

  相似文献   


8.
The polyacrylonitrile/polymethyl‐methacrylate (PMMA/PAN) porous fibers, core–shell hollow fibers, and porous thin films are prepared by coaxial electrospinning, single electrospinning, and spin‐coating technologies, respectively. The different morphologies arising from different processes display great influences on their thermal and crystalline properties. The adding of PMMA causes porous structure due to the microphase‐separation structure of immiscible PMMA and PAN phases. The lower weight loss, higher degradation temperature, and glass‐transition temperatures of porous thin films than those of porous fibers and core–shell hollow fibers are obtained, evidencing that the polymer morphologies produced from the different process can efficiently influence their physical properties. The orthorhombic structure of PAN crystals are found in the PMMA/PAN porous thin films, but the rotational disorder PAN crystals due to intermolecular packing are observed in the PMMA/PAN porous fibers and core–shell hollow fibers, indicating that different processes cause different types of PAN crystals.

  相似文献   


9.
One major challenge of biomaterial engineering is to mimic the mechanical properties of anisotropic, multifunctional natural soft tissues. Existing solutions toward controlled anisotropy include the use of oriented reinforcing fillers, with complicated interface issues, or UV‐curing processing through patterned masks, that makes use of harmful photosensitive molecules. Here, a versatile process to manufacture biocompatible silicone elastomer membranes by light degradation of the platinum catalyst prior to thermal cross‐linking is presented. The spatial control of network density is demonstrated by experimental and theoretical characterizations of the mechanical responses of patterned cross‐linked membranes, with a view to mimic advanced implantable materials.

  相似文献   


10.
Recent advances in clinical practice drive deoxyribonucleic acid (DNA) as an important class of biomarker. Monitoring the change in their concentration suggests the initiation and/or progression of various disorders. However, low quantity of DNA biomarkers in body fluids requires a delicate isolation methodology that provides efficient separation and easy handling. This study describes a newer‐generation separation technology relying on electrospun fibers of sub‐micrometer diameter of a commodity polymer for DNA biomarkers in simulative serum. Fibrous polystyrene membranes are prepared by electrospinning and they are subjected to post‐modification with Au. The composite membranes may provide a convenient environment for the removal of bovine serum albumin (BSA) from BSA and DNA mixtures. The eluent can be used as an efficient tool for detection of DNA biomarkers associated with diagnosis of numerous life‐threatening diseases.

  相似文献   


11.
Appropriate membrane for blood contacting applications requires hemocompatibility and high permeation flux; it should inhibit proteins or platelets adsorption and still possess high permeability. Aiming to improve the polyethersulfone (PES) hollow fiber membrane hemocompatibility, sulfonated polyether ether ketone (SPEEK) is self‐synthesized in the present research and added to PES in different ratios. Scanning electron microscopy images have revealed significant changes in PES membranes structure after addition of SPEEK, which can influence water permeation property of the membranes. Water contact angles of the membranes have reduced from 75° to 50° after addition of 4 wt% SPEEK. Influence of SPEEK addition on hemocompatibility of the PES membranes is evaluated via protein (bovine serum albumin) adsorption, platelet attachment, and coagulation time (APTT and TT) assays. Obtained results reveal that hemocompatibility of the modified hollow fiber membranes is enhanced as a result of emerging repulsive forces between negative charges on the membranes surface and negatively charge blood components.

  相似文献   


12.
In this work, porous poly(methacrylic acid) (PMAA) coatings are formed on complex substrates using vapor phase precursors. The porous coatings are created by partially polymerizing solid monomer deposited onto the substrate. The conformality of the porous PMAA coatings is studied on the external and internal surfaces of cylindrical substrates. Flow effects lead to thickness variations in the θ‐direction while thermal gradients and monomer depletion effects lead to thickness variations in the z‐direction. These variations can be reduced by modifying the flow rate of the monomer vapor, by reducing the radiative heat on the substrate, or by increasing the dimension size of the substrate. This work shows that vapor phase processing methods can be a viable alternative to solution phase methods and the observed trends can be utilized in a range of vapor phase technologies to optimize porous coatings for use in tissue engineering, sensors, and separations.

  相似文献   


13.
Dopamine is a molecule that facilitates biomineralization, and it is used to prepare electropolymerization‐induced polydopamine (PDA). For the first time, dopamine is used for template‐free electrochemical polymerization to form biocompatible polypyrrole (PPy) nanofiber coatings on bone implants. Dopamine monomers are electropolymerized to PDA chains affixed to biomedical titanium after the nanomicelles are tuned to self‐assemble by triggering the potential, resulting in nanofiber formation. Dopamine serves as a dopant to induce the formation of conductive PPy nanofibers and as a promoter to accelerate biomineralization, cell proliferation, and adhesion.

  相似文献   


14.
Pollution control has become increasingly important in recent years. Heavy metal ions, proteins, and dyes are frequently found in wastewater because of their extensive industrial applications. In this study, pH, temperature, and magnetic triple‐responsive poly(N‐isopropylacrylamide‐co‐methacrylic acid) porous microspheres doped with magnetite nanoparticles as a new type of smart adsorbents are used to remove the aforementioned pollutants. The pH‐ and temperature‐responsiveness of these microspheres realizes tunable adsorption toward Cu(II). Simultaneously, the microspheres exhibit good adsorption capability to lysozyme and basic fuchsine. Microsphere‐adsorbing pollutants are easlily separated from wastewater by applying an external magnetic field to reuse the microspheres.

  相似文献   


15.
Interfacial polymerization of dopamine and terephtaloyl chloride is performed on a porous crosslinked polyacrylonitrile support membrane. The resulting polymer layer has a smooth surface and is ultrathin (about 5 nm). The chemical nature of the interfacially polymerized layer is characterized by Fourier transform infrared spectroscopy and by X‐ray photoelectron spectroscopy. The thin‐film composite membrane is stable in aggressive solvents like dimethylformamide (DMF) and the membrane shows high solvent permeances combined with a molecular weight cut‐off below 800 g mol‐1. The remarkable stability in DMF, the ease of preparation as well as the extremely thin and smooth selective layer make this new type of bioinspired membrane attractive for solvent resistant nanofiltration.

  相似文献   


16.
This article deals with the amine blush phenomenon in epoxy coatings. Amine blush is due to amine carbonation and weakens the visual aspect of room temperature epoxy coatings. This paper describes a way to avoid the carbonation by preparing aminotelechelic prepolymers is described. For the first time, the amine‐adduct impact over amine carbonation, as well as the amine decarbonation with temperature, has been investigated by infrared spectroscopy. Moreover, a range of epoxy materials displaying various Tg are synthesized from amine‐adducts and compared to polyurethane references generally used for transparent coating applications. Mechanical and thermal properties are also investigated.

  相似文献   


17.
A new facile approach for the fabrication of polymer‐Ag honeycomb film is reported. A polymer‐Ag+ honeycomb thin film is obtained by casting a CHCl3 solution of a functional graft copolymer on aqueous silver nitrate solution, leading to metal complexation induced phase separation at the air/water interface. The film is reduced by UV irradiation to give a polymer‐Ag honeycomb film with regular morphology. Pyrolysis of the film gives a translucent Ag honeycomb film.

  相似文献   


18.
A gas‐permeable cellulose template for microimprint lithography has been synthesized and characterized for the reduction of template damage and gas trapping caused by solvents and oxygen generated from cross‐linked materials. The 5 μm line‐pattern failure of the microimprinted UV cross‐linked liquid materials with 4.7 wt% acetone as a volatile solvent is solved by using the gas‐permeable cellulose template because of its increased oxygen permeability. The gas‐permeable cellulose template also allows the use of volatile solvents with high coating property and solubility into the microimprinted materials instead of the compounds and plastic resins conventionally used in mold injection.

  相似文献   


19.
The introduction of nanodiamond particles (NDs) in silane‐crosslinked polyethylene is found to lead to a notable and systematic deformation of the polymer unit cell. X‐ray diffraction evidence of the existence of a modified crystalline structure in the bulk of the polymer due to the presence of NDs is reported here for the first time. The covalent bonding between NDs and the surrounding macromolecular chains may support that the excessive local stress field ultimately distorts the polymer conformation, yielding a new distorted but still crystalline interface. Supporting data from solid‐state NMR experiments confirm the existence of a modified crystalline interface of about 1–2 nm in all the nanocomposite materials.

  相似文献   


20.
The mechanical properties and microstructure of injection molded isotactic polypropylene parts with high orientation before and after annealing are analyzed. The mechanical properties of the annealed samples are improved effectively. Through thorough analysis of various structural characterizations, a microstructural model based on the fact that the total length of long period kept constant to analyze the variation of mechanical properties is proposed. It is suggested that the increase of overall crystallinity, the recombination of crystalline phase, and the increase of amorphous phase, respectively, are beneficial for the improvements of the strength, stiffness, and toughness of annealed samples.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号