首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polpyrrole (PPy)/Ag nanocomposites were successfully synthesized at the interface of water and ionic liquid by one-step UV-induced polymerization. Highly dispersed PPy/Ag nanoparticles were obtained by controlling the experimental conditions. The results of Fourier-transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy revealed that the UV-induced interface polymerization leaded to the formation of PPy incorporating silver nanoparticles. It was also found that the electrical conductivity of PPy/Ag nanocomposite was about 100 times higher than that of pure PPy.  相似文献   

3.
Polymer‐grafted inorganic particles (PGIPs) are attractive building blocks for numerous chemical and material applications. Surface‐initiated controlled radical polymerization (SI‐CRP) is the most feasible method to fabricate PGIPs. However, a conventional in‐batch reaction still suffers from several disadvantages, including time‐consuming purification processes, low grafting efficiency, and possible gelation problems. Herein, a facile method is demonstrated to synthesize block copolymer–grafted inorganic particles, that is, poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMEMA)‐b‐poly(N‐isopropylacrylamide) (PNIPAM)–grafted silica micro‐particles using continuous flow chemistry in an environmentally friendly aqueous media. Immobilizing the chain transfer agent and subsequent SI‐CRP can be accomplished sequentially in a continuous flow system, avoiding multi‐step purification processes in between. The chain length (MW) of the grafted polymers is tunable by adjusting the flow time or monomer concentration, and the narrower molar mass dispersity (Р< 1.4) of the grafted polymers reveals the uniform polymer chains on the particles. Moreover, compared with the in‐batch reaction at the same condition, the continuous system also suppresses possible gelation problems.  相似文献   

4.
Living graft macromolecule has been prepared through reversible addition‐fragmentation chain transfer (RAFT) living radical polymerization in one step. Then, it was used to make polymer‐dispersed liquid crystal (PDLC) by controlling the mole ratio of styrene (St) to 1,6‐hexanediol diacrylate (HDDA) and adjusting the content of prepared graft macromolecule. The results showed that electro‐optical properties of PDLC have been optimized. Different concentration of living graft macromolecule and different mole ratio of St/HDDA led to substantial improvement of driving voltage (threshold voltage and saturation voltage) and memory effect of PDLC simultaneously. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
A novel method of preparing skinned asymmetric membranes with two distinctive layers is described: a top layer composed of chemically cross‐linked polymer chains (dense layer) and a bottom layer of non‐cross‐linked polymer chains (porous substructure). The method consists of two simple steps that are compatible with industrial membrane fabrication facilities. Unlike conventional processes to prepare asymmetric membranes, with this approach it is possible to finely control the structure and functionalities of the final membrane. The thickness of the dense layer can be easily controlled over several orders of magnitude and targeted functional groups can be readily incorporated in it.

  相似文献   


6.
An amphiphilic LCBC PEO‐b‐PAz consisting of flexible PEO as a hydrophilic block and poly(methacrylic acid) containing an azobenzene moiety in side chain as a hydrophobic LC segment was synthesized and used to fabricated microporous films by spin‐coating method under a dry environment. With the help of a small amount of water, well‐arranged ellipsoidal micropores embedded in a LC matrix were obtained and the pore size is in the range of several tens µm of water. The influence of water content and rotational speed was studied in detail. It was found that regularly patterned microporous films can be prepared with certain water content, and the pore size can be easily tailored through changing the rotational speed. The obtained microporous structures showed good thermal and photo stability.

  相似文献   


7.
Swift‐silver‐ion irradiation was explored as a means of forming chemically active sites on the surface of biaxially oriented polypropylene films. The active species, formed in air, was used to induce the graft copolymerization of glycidyl methacrylate in an aqueous solution. The surface structure, crystallinity, morphology, and hydrophilicity of the grafted samples were characterized with Fourier transform infrared, UV, wide‐angle X‐ray diffraction, scanning electron microscopy, and contact‐angle measurements. Glycidyl methacrylate could be grafted onto biaxially oriented polypropylene after swift‐heavy‐ion irradiation without an additional initiator. The contact angle of the modified films decreased with the grafting percentage of glycidyl methacrylate on the polypropylene. The swift silver ions induced significant grafting only in small regions (i.e., the latent tracks) of the polymer. Furthermore, as the fluence of swift heavy ions increased beyond an optimum value, the overlapping of the latent tracks reduced the grafting yield. The observed findings could be very useful in developing an initiator‐free grafting system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
We designed and prepared novel hybrid films of nanoparticles consisting of gelatin‐g‐poly(methyl methacrylate) (PMMA)/silver (Ag) polymers with ordered nanoporous, higher antibacterial activities. First, the gelatin‐grafted PMMA microspheres were fabricated with the in situ copolymerization of gelatin and alkenes under radical initiation, which acted as a stabilizer and regulator for Ag nanoparticle growth. Then, silver nitrate was entrapped in a copolymerization system at 40°C for 30 min. Finally, the gelatin‐g‐PMMA/Ag polymer hybrid films were prepared by the reduction of Ag+ with hydrazine, followed by emulsion solidification. The antibacterial activities of the gelatin‐g‐PMMA/Ag polymer hybrid films against Escherichia coli and Staphylococcus aureus were found with the disc diffusion method and colony count assays to be clear and lasting. In this study, our work not only presented a good example of a nanoporous antibacterial film material but also provided a facile method for making use of gelatin and metal/inorganic self‐assemble properties in graft copolymerization to prepare functional polymer hybrids, such as antibacterial, antithrombogenic, and dot‐quantum effect materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
In this study, we conveniently obtained Ag(0)–polymer nanocomposites by reacting AgNO3 with commercial poly(vinyl acetate) (PVAc) in the absence of a special reducing agent. The formation of Ag(0) metal was detected after formic acid (HCOOH) was added to a PVAc–AgNO3 complex system, and some of the acetate groups of the PVAc backbone were hydrolyzed to form hydroxyl groups (OH) under the catalytic effect of the reduced Ag(O) metal. Here, the structure of the partially hydrolyzed PVAc backbone was represented as PVOH‐PVAc. X‐ray diffraction spectra showed that the Ag(0) metal generated in this method was in the form of Ag crystals. The structure of the Ag(0)–polymer was analyzed by 1H‐NMR and 13C‐NMR spectroscopy. The micellization of the Ag(0)–polymer was also investigated by the addition of an inducing solvent to the formic acid solution of Ag(0)–polymer. The image showed that the morphology of the Ag micelles in the H2O‐induced solvent was a Ag corona with a Ag shell, and that in the p‐xylene induced solvent showed a Ag cluster core structure. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1457–1464, 2006  相似文献   

10.
A facile, one‐step, and single‐component fabrication of superhydrophobic and superoleophilic coating by electropolymerization of polythiophene on a stainless steel mesh is presented. The resulting coating has low surface energy and shows surface morphology bearing both micro‐ and nano‐features without the need to add nanofillers, or pretreatment of the substrate to make it rough. The polythiophene coating also shows reversible wetting property (superhydrophobic to superhydrophilic, and vice versa) by electrochemical doping and dedoping. The coated mesh is shown to repel water of different pH (1, 7, and 14) and salt content. On the other hand, oil such as dichloromethane, gasoline, kerosene, dodecane, and crude oil can easily pass through the mesh. Therefore, the coated mesh is an excellent material for the separation of oil and water.  相似文献   

11.
A water‐soluble polymer containing phosphonic acid groups was investigated as a polychelatogen by using the liquid‐phase polymer‐based retention technique (LPR) under different experimental conditions. The maximum retention capacity of this polymer was determined at different pHs and polymer–metal ion ratios. The metal ions investigated were Ag(I), Cu(II), Co(II), Ni(II), and Cr(III). The maximum retention capacity values of the divalent metal ions were very similar and higher than those for the trivalent cations, indicating that the polymer–metal ion interaction was basically through electrostatic type. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2917–2922, 2004  相似文献   

12.
Solid‐state nuclear magnetic resonance (S‐NMR) can reveal much useful information, including conformations, stereoregularity, defect structures, and comonomer sequence. S‐NMR is especially useful for revealing microstructural differences that can alter local polymer chains. A series of bifunctional chelating/ion‐exchange resins, containing differing ratios of iminodiacetic acid to acetic acid, were synthesized. Cross‐polarization magic‐angle spinning (CP/MAS) 13C‐NMR was employed to measure conformation changes both before and after the bonding of ligands and lead ion adsorbed on bifunctional chelated/ion‐exchange resins in this investigation. From the 13C‐NMR spectra, as the lead ion was adsorbed by the iminodiacetic acid chelating group, the motion of molecular chain would be inhibited and the resonance peaks of the carboxylate anion at 170 ppm would shift downfield. Compared to the FTIR results, the downfield shift of the resonance peaks indicated that the bonding of carboxylate anion and lead ion adsorbed displayed an ionic trend. Furthermore, the bonding of the carboxylic group and lead ion adsorbed changed from ionic to covalent as the chelating group in bifunctional/ion‐exchange resins decreased. The linear relationship between the areas of those resonance peaks and the amount of lead ion adsorbed was obtained from the spectra fitting. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 919–928, 2002  相似文献   

13.
A rapid and efficient cross‐coupling reaction of sodium tetraphenylborate with aryl bromides was carried out in water at 120 °C in the presence of a polymer‐supported palladium catalyst and potassium carbonate under focused microwave irradiation. All four phenyl groups of sodium tetraphenylborate participated in the reaction and produced polyfunctional biaryls in excellent yields. The polymeric catalyst can be easily separated from the reaction mixture and reused more than 10 times without showing any decrease in activity.  相似文献   

14.
The evaluation of heterogeneous polymeric species by a selective, dual detector size‐exclusion chromatography setup can provide accurate results on the incorporation of specific functional groups in copolymers as a function of the molar mass distribution. However, when non‐UV‐absorbing species are used in copolymerization reactions, the dual detector method becomes less reliable. By interfacing a Fourier transform infrared (FTIR) spectrometer with size‐exclusion chromatography (SEC), the problem can be overcome, making it possible to map non‐UV‐absorbing species as a function of the molar mass distribution. Coupling takes place via a solvent‐evaporation stage, which delivers the mobile phase as a dry, solvent‐free polymeric film onto a germanium disk. In this article, styrene and methyl methacrylate were grafted onto epoxidized natural rubber (ENR50) and analyzed by SEC. The accuracy of FTIR as a suitable detector was evaluated by comparing results from a dual detector SEC setup and FTIR coupled to SEC. FTIR proved to be a successful detector for the analysis of non‐UV‐absorbing species. This was consequently followed by the characterization of methyl methacrylate‐grafted ENR50. From the relevant data, Gram–Schmidt and contour plots could be made to indicate the incorporation of methyl methacrylate into the grafted epoxidized natural rubber as a function of the molar mass distribution. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2539–2549, 2003  相似文献   

15.
Summary: Two distinct types of polymer electrolyte membranes for conducting protons and lithium ions have been prepared by a radiation‐induced grafting method. The polymer electrolyte precursor (PVDF‐g‐PS) is obtained by the simultaneous grafting of styrene onto poly(vinylidene fluoride) (PVDF) followed by one of two specific treatments. This includes sulfonation with a chlorosulfonic acid/dichloromethane mixture to obtain proton (H+)‐conducting membranes, or activation with LiPF6/EC/DC liquid electrolyte to obtain lithium ion (Li+)‐conducting membranes. The chemical structure of the obtained electrolyte membranes is verified by FT‐IR spectroscopy. Differential scanning calorimetry is used to examine the changes in the crystallinity and the thermal properties of both electrolyte membranes during the preparation process. The thermal stability of both electrolyte membranes is also evaluated using thermal gravimetrical analysis. The obtained polymer electrolyte membranes achieve superior conductivity values: 1.61 × 10?3 S · cm?1 for Li+ and 5.95 × 10?2 S · cm?1 for H+ at room temperature at a polystyrene content of 50%. The results of this work suggest that high quality H+‐ and Li+‐conducting membranes can be obtained using a single radiation‐induced grafting method.

Schematic representation of the single root for preparation of Li+‐ and H+‐conducting membranes started by radiation‐induced grafting of styrene onto a PVDF film followed by chemical treatment.  相似文献   


16.
The effect of quaternary ammonium-based bolaform counterions (Bolan-series where n is the number of carbon atoms between the heads) on the adsorption of sodium dodecyl sulfonate (SDDS) at the air/water interface has been studied using surface tension measurements. The results showed that the Bolan counterions strongly interacted with SDDS even at very low concentrations. This reduced the CMC and C 20 in the presence of Bolan counterions. The SDDS packed more tightly at the interface under the inducement of Bolan counterions and thus the occupied area per surfactant molecule decreased. Another bolaform counterion series (Bolanph) with a benzene ring attached on each side of the quaternary ammonium heads could further enhance the interaction with SDDS. This is due to the fact that the attached aromatic rings penetrate into the gaps between the surfactant headgroups, which provide an additional association force besides the electrostatic attractions. The present results suggested an approach to construct gemini-like surfactants depending on the electrostatic attraction between the bolaform counterions and the conventional ionic surfactants or an additional hydrophobic force made by the attached aromatic rings.  相似文献   

17.
A novel starch‐graft‐acrylamide/kaolinite superabsorbent composite with water absorbency 4000 times (g ) was synthesized by a graft copolymerization reaction among acrylamide, potato starch and kaolinite ultrafine powder, followed by saponification with NaOH. The influence of the hydrophilic group on water absorbency was investigated. It was found that the combined absorbent effect of —CONH2, —COONa and —COOH groups was superior to that of a single group, and the composite with the molar ratio of 8:6:3 for the —CONH2, —COONa and —COOH groups exhibits the highest water‐absorbent ability. Copyright © 2003 Society of Chemical Industry  相似文献   

18.
This review presents firstly the synthesis of various dendritic hyperbranched polymers with well‐defined structures by generation‐based growth methodologies using living/controlled polymerization. Secondly, the synthesis of dendritic hyperbranched poly(methyl methacrylate)s (PMMAs) and their functionalized block copolymers using a novel iterative methodology is described. The methodology involves a two‐reaction sequence in each iterative process: (a) a linking reaction of α‐functionalized living anionic PMMA with tert‐butyldimethylsilyloxymethylphenyl (SMP) groups with benzyl bromide (BnBr)‐chain‐end‐functionalized polymer and (b) a transformation reaction of the SMP groups into BnBr functions. This reaction sequence is repeated several times to construct high‐generation (maximum seventh generation) dendritic hyperbranched polymers. Similar branched architectural block copolymers have also been synthesized by the same iterative methodology using other α‐functionalized living anionic polymers. Surface structures of the resulting dendritic hyperbranched block copolymers composed of PMMA and poly(2‐(perfluorobutyl)ethyl methacrylate) segments have been characterized using X‐ray photoelectron spectroscopy and contact angle measurements. Solution behaviors of dendritic hyperbranched PMMAs with different generations and branch densities are discussed based on their intrinsic viscosities, g′ values and Rh values. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
A polystyrene (PS)‐b‐polylactide (PLA) block copolymer was prepared from the combination of atom transfer radical polymerization and ring‐opening polymerization with commercially available 2,2,2‐tribromoethanol as a dual initiator in a sequential two‐step procedure. Hydroxyl‐terminated polystyrene (PS‐OH)s with various molecular weights were first prepared with polydispersity indices lower than 1.3; these provided valuable macroinitiators for the polymerization of D,L ‐lactide. A block copolymer with a composition allowing the formation of hexagonally packed PLA cylinders in a PS matrix was then obtained. The PS‐b‐PLA thin films revealed, after vapor solvent annealing, a hexagonally packed organization of the PLA cylinders, which was oriented perpendicularly to the surface of the film. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Sub‐seabed geological storage of CO2 in the form of gas hydrate is attractive because clathrate hydrate stably exists at low temperature and high pressure, even if a fault occurs by diastrophism like a big earthquake. For the effective design of the storage system it is necessary to model the formation of CO2‐hydrate. Here, it is assumed that the formation of gas hydrate on the interface between gas and water consists of two stages: gas diffusion through the CO2‐hydrate film and consequent CO2‐hydrate formation on the interface, between film and water. Also proposed is the presence of a fresh reaction interface, which is part of the interface between the gas and aqueous phases and not covered with CO2‐hydrate. Parameters necessary to model the hydrate formation in sand sediment are derived by comparing the results of the present numerical simulations and the measurements in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号