首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The introduction of nanodiamond particles (NDs) in silane‐crosslinked polyethylene is found to lead to a notable and systematic deformation of the polymer unit cell. X‐ray diffraction evidence of the existence of a modified crystalline structure in the bulk of the polymer due to the presence of NDs is reported here for the first time. The covalent bonding between NDs and the surrounding macromolecular chains may support that the excessive local stress field ultimately distorts the polymer conformation, yielding a new distorted but still crystalline interface. Supporting data from solid‐state NMR experiments confirm the existence of a modified crystalline interface of about 1–2 nm in all the nanocomposite materials.

  相似文献   


2.
A new facile approach for the fabrication of polymer‐Ag honeycomb film is reported. A polymer‐Ag+ honeycomb thin film is obtained by casting a CHCl3 solution of a functional graft copolymer on aqueous silver nitrate solution, leading to metal complexation induced phase separation at the air/water interface. The film is reduced by UV irradiation to give a polymer‐Ag honeycomb film with regular morphology. Pyrolysis of the film gives a translucent Ag honeycomb film.

  相似文献   


3.
This study describes novel and simple conditions for the fabrication of collagen microfibers with specific physical and mechanical properties, which can then be potentially applied as cell‐based matrices. The microfibers are fabricated from collagen hydrogels, using various concentrations of ethanol, in ethanol–water solvents. At higher ethanol concentration, fibers exhibited increased uniformity of surface morphology, decreased diameter, and increased tensile strength. The morphology of cells on microfibers varies due to the surface morphology of microfibers but the microfibers fabricated under all conditions investigated show similar number of attached cells on the surface of fibers, and cells sustain their viability for 90 h.

  相似文献   


4.
The previously introduced process for enzyme‐mediated in situ synthesis and deposition of eumelanin is investigated with covalent immobilization of the tyrosinase. It results in a monolayer structure of non‐coalesced melanin particles, with a film thickness of 5–8 nm. The reaction is self‐terminating due to overlay of the enzymes with particles. The melanin particles are rodlike with lengths down to 6 nm. Isolated melanin structures of such small size have not been observed before and might be a kind of protoparticle in the supramolecular buildup of melanin oligomers. Utilization of melanin particles with such small size can enable nanotechnological applications in the areas of bioelectronics and biosensors.

  相似文献   


5.
The mechanical properties and microstructure of injection molded isotactic polypropylene parts with high orientation before and after annealing are analyzed. The mechanical properties of the annealed samples are improved effectively. Through thorough analysis of various structural characterizations, a microstructural model based on the fact that the total length of long period kept constant to analyze the variation of mechanical properties is proposed. It is suggested that the increase of overall crystallinity, the recombination of crystalline phase, and the increase of amorphous phase, respectively, are beneficial for the improvements of the strength, stiffness, and toughness of annealed samples.

  相似文献   


6.
In this study, polyamide 6/polystyrene in situ microfibrillar blends are prepared via anionic polymerization of ε‐caprolactam in a twin screw extruder. Scanning electron microscope analysis reveals that microfibrillated PA6 dispersed phase, which is continuous and preferentially oriented parallel to the extrusion direction, is in situ formed within polystyrene (PS) matrix during reactive extrusion at the content PS equal to 30 and 40 wt%. Mechanical properties analysis shows that the yield strength and elongation at break of PA6/PS (70/30 and 60/40) microfibrillar blends are remarkably increased with respect to those of pure PS. Also, the in situ fibrillation mechanisms are investigated by the analysis of morphological evolution. This work demonstrates a facile and efficient route to fabricate the microfibrillar blends with relatively high contents of polymer microfibrils.

  相似文献   


7.
Suitable membranes for blood‐contacting medical applications need to be resistant in confrontation with blood proteins and cells, while possessing high blood compatibility and permeability at the same time. Herein, an overview of the recent advances and strategies that have been used to enhance the hemocompatibility of polymeric membranes is provided. The review focuses on two modification strategies: (i) physical modifications and (ii) chemical modifications. It also highlights the current progress in the design of hemocompatible‐functionalized membranes for biomedical applications. Subsequently, the commonly applied biocompatibility tests are also discussed and finally the future perspectives of the application of polymeric membranes in the biomedical field are presented.

  相似文献   


8.
Microneedles are small needle‐like structures that are almost invisible to the naked eye. They have an immense potential to serve as a valuable tool in many medical applications, such as painless vaccination. Microneedles work by breaking through the stratum corneum, the outermost barrier layer of the skin, and providing a direct path for drug delivery into the skin. A lot of research has been presented over the past two decades on the applications of microneedles, yet the fundamental mechanism of how they interact, pressure, and penetrate the skin in its native state is worth examining further. As such, a major difficulty with understanding the mechanism of microneedle–skin interaction is the lack of an artificial mechanical human skin model to use as a standardized substrate. In this research news, the development of an artificial mechanical skin model based on a thorough mechanical study of fresh human and porcine skin samples is presented. The artificial mechanical skin model can be used to study the mechanical interactions between microneedles and skin, but not diffusion of molecules across skin. This model can assist in improving the performance of microneedles by enhancing the reproducibility of microneedle depth insertions for optimal drug delivery and biosensing.

  相似文献   


9.
Dopamine is a molecule that facilitates biomineralization, and it is used to prepare electropolymerization‐induced polydopamine (PDA). For the first time, dopamine is used for template‐free electrochemical polymerization to form biocompatible polypyrrole (PPy) nanofiber coatings on bone implants. Dopamine monomers are electropolymerized to PDA chains affixed to biomedical titanium after the nanomicelles are tuned to self‐assemble by triggering the potential, resulting in nanofiber formation. Dopamine serves as a dopant to induce the formation of conductive PPy nanofibers and as a promoter to accelerate biomineralization, cell proliferation, and adhesion.

  相似文献   


10.
Nanofiber‐based hydrocolloid scaffold is prepared by colloid electrospinning of thermoplastic polyurethane (TPU)/sodium carboxymethyl cellulose (S.CMC) in tetrahydrofuran (THF)/dimethylformamide (DMF). The most suitable process of electrospinning for successful formation of fibers is investigated by controlling the concentration of polymeric solution and co‐solvent ratio. In order to accomplish high wettability, the amount of colloid (S.CMC) and the co‐solvent ratio (THF/DMF), which affects the morphology of fibers, are adjusted. Finally, the open wound healing effect is confirmed using nanofiber‐hydrocolloid from in vivo animal studies. A detailed study of the wound healing process is also demonstrated for the first time.

  相似文献   


11.
Acrylonitrile–butadiene–styrene (ABS) is a polymer composing of acrylonitrile, butadiene, and styrene. It has been widely used in industry because of its good mechanical and physical properties. The fabrication of ABS fibers, however, has been rarely studied. Here the fabrication of ABS fibers has been reported by an electrospinning technique, in which the sizes and morphologies of the fibers can be controlled by adjusting the electrospinning conditions. The morphologies of the ABS fibers can also be transformed by annealing the fibers on poly (methyl methacrylate) (PMMA) films. After annealing, the ABS fibers gradually transform to ABS particles embedded in the PMMA films by a mechanism similar to the Rayleigh‐instability‐type transformation. To extend the applications of the electrospun ABS fibers, electroless deposition of copper is also conducted, resulting in copper‐coated ABS fibers.

  相似文献   


12.
Silicone materials are widely used in many fields such as electrical or food industries and their consumption is constantly growing. They are generally cured by vulcanization reaction for long time at high temperatures which requires high energy consumption. The possibility to achieve the polymerization of silicone rubbers by UV‐activation promotes the reduction of both time and temperature leading to an impressive energy saving. Indeed, this process is more than 30 times faster than the thermal one. Moreover, the properties of the two resulting materials are comparable, indicating that the low time of UV‐activated hydrosilation reaction is suitable for the formation of crosslinked silicone polymers.

  相似文献   


13.
In the present study, the covalent bonding of electroconductive cross‐linked hydrogel networks with both electro‐properties and hydrogel characteristics to titanium surfaces via a UV‐initiated radical thiol‐ene click reaction is investigated. The electroconductive hydrogel layers are formed by the electropolymerization of pyrrole within the titanium implant‐supported gelatin methacrylate hydrogel. Characterization of the surface morphology of the layers reveals a unique rough macroporous structure. The hydrogel coating layer on the titanium surfaces possesses the desired characteristics of high electrochemical activity and high mechanical stability due to the effects of the chemical functionalization. Bone mesenchymal stem cells cultured on the hydrogel substrates exhibit high cell viability. This study is the first to demonstrate the potential of an electroconductive hydrogel as a surface coating on titanium implants for cell growth and provides a foundation for the development of new implantable bioelectronic devices.

  相似文献   


14.
Electrospinning of sulfur‐free softwood lignin (SFSL) in N,N‐dimethylformamide (DMF) is reported as is and with poly(ethylene oxide) (PEO). SFSL macromolecules behave as rigid spheres, instead of free draining macromolecules in DMF. Hence they are investigated as colloids. Colloidal SFSL generates uniform fibers only at the volume fraction of 0.63. It is due to the sufficiently high longest mean relaxation time at the volume fraction of 0.63. Colloidal SFSL below the volume fraction of 0.63 does not exhibit any measurable viscoelasticity and also does not generate any uniform fibers. Bead‐free fibers are generated at volume fractions below 0.63 only by adding PEO. PEO presence brings elasticity to colloidal SFSL and produces bead‐free fibers only above the entanglement concentration of PEO in DMF. The presence of SFSL macromolecules does not cause any interactions with PEO molecules, except it reduces the available of free volume for PEO chains in DMF.

  相似文献   


15.
This article deals with the amine blush phenomenon in epoxy coatings. Amine blush is due to amine carbonation and weakens the visual aspect of room temperature epoxy coatings. This paper describes a way to avoid the carbonation by preparing aminotelechelic prepolymers is described. For the first time, the amine‐adduct impact over amine carbonation, as well as the amine decarbonation with temperature, has been investigated by infrared spectroscopy. Moreover, a range of epoxy materials displaying various Tg are synthesized from amine‐adducts and compared to polyurethane references generally used for transparent coating applications. Mechanical and thermal properties are also investigated.

  相似文献   


16.
Interfacial polymerization of dopamine and terephtaloyl chloride is performed on a porous crosslinked polyacrylonitrile support membrane. The resulting polymer layer has a smooth surface and is ultrathin (about 5 nm). The chemical nature of the interfacially polymerized layer is characterized by Fourier transform infrared spectroscopy and by X‐ray photoelectron spectroscopy. The thin‐film composite membrane is stable in aggressive solvents like dimethylformamide (DMF) and the membrane shows high solvent permeances combined with a molecular weight cut‐off below 800 g mol‐1. The remarkable stability in DMF, the ease of preparation as well as the extremely thin and smooth selective layer make this new type of bioinspired membrane attractive for solvent resistant nanofiltration.

  相似文献   


17.
Colloidal assemblies of inorganic nanoparticles dispersed in liquid media hold particular promise for the creation of a unique class of functional materials with innovative applications. In the present report, “compound‐eye”‐like core–shell and Janus‐type silica and amino‐terminated 1,2‐polybutadiene (PB‐NH2) and polystyrene (PS) composite microspheres are successfully prepared by simply mixing an aqueous dispersion of silica particles into a tetrahydrofran (THF) solution of PB‐NH2, and PB‐NH2 and PS blends, followed by evaporation of the THF. This co‐precipitation process provides a new approach for producing organic–inorganic composite particles without the need for surface modification of the inorganic nanoparticles.

  相似文献   


18.
Flexible polymers such as poly dimethyl siloxane (PDMS) can be patterned at the micro‐ and nanoscale by casting, for a variety of applications. This replication‐based fabrication process is relatively cheap and fast, yet injection molding offers an even faster and cheaper alternative to PDMS casting, provided thermoplastic polymers with similar mechanical properties can be used. In this paper, a thermoplastic polyurethane is evaluated for its patterning ability with an aim to forming the type of flexible structures used to measure and modulate the contractile forces of cells in tissue engineering experiments. The successful replication of grating structures is demonstrated with feature sizes as low as 100 nm and an analysis of certain processing conditions that facilitate and enhance the accuracy of this replication is presented. The results are benchmarked against an optical storage media grade polycarbonate.

  相似文献   


19.
One major challenge of biomaterial engineering is to mimic the mechanical properties of anisotropic, multifunctional natural soft tissues. Existing solutions toward controlled anisotropy include the use of oriented reinforcing fillers, with complicated interface issues, or UV‐curing processing through patterned masks, that makes use of harmful photosensitive molecules. Here, a versatile process to manufacture biocompatible silicone elastomer membranes by light degradation of the platinum catalyst prior to thermal cross‐linking is presented. The spatial control of network density is demonstrated by experimental and theoretical characterizations of the mechanical responses of patterned cross‐linked membranes, with a view to mimic advanced implantable materials.

  相似文献   


20.
In this study, a facile method about generating porous poly (l ‐lactide) (PLLA) materials with uniform morphology by gradual precipitation is reported. By adjusting the solvents, concentrations of polymer solution, and drying process, petal‐like PLLA nanosheets can be conveniently obtained, which can further form porous materials with tunable porosities (85–92%). X‐ray diffraction affirms that α‐form crystals of PLLA with high crystallinity (51.66% according to differential scanning calorimetry) can be obtained. Mechanical test shows that the compression modulus is tunable with values ranging from 1.76 to 19.98 MPa. Notably, because of its high porosity, interconnected pore structure, and tunable mechanical properties, these versatile porous materials are especially fit for being utilized in polymer scaffold field.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号