首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We herein report on an iontronic device to drive and control Aβ1‐40 and Aβ1‐42 fibril formation. This system allows kinetic control of Aβ aggregation by regulation of H+ flows. The formed aggregates show both nanometer‐sized fibril structure and microscopic growth, thus mimicking senile plaques, at the H+‐outlet. Mechanistically we observed initial accumulation of Aβ1‐40 likely driven by electrophoretic migration which preceded nucleation of amyloid structures in the accumulated peptide cluster.

  相似文献   


2.
Dopamine is a molecule that facilitates biomineralization, and it is used to prepare electropolymerization‐induced polydopamine (PDA). For the first time, dopamine is used for template‐free electrochemical polymerization to form biocompatible polypyrrole (PPy) nanofiber coatings on bone implants. Dopamine monomers are electropolymerized to PDA chains affixed to biomedical titanium after the nanomicelles are tuned to self‐assemble by triggering the potential, resulting in nanofiber formation. Dopamine serves as a dopant to induce the formation of conductive PPy nanofibers and as a promoter to accelerate biomineralization, cell proliferation, and adhesion.

  相似文献   


3.
Most insect eyes use microvillar photoreceptors, where the visual pigment rhodopsin is aligned within tubular microvilli, endowing the insects with amazing navigation ability through detecting the polarization of illuminating light in the sky. Herein, polydiacetylene‐polystyrene (PDA‐PS) hybrid microfibers are fabricated by electrospinning method and it is demonstrated that PDA‐PS hybrid microfibers exhibit interesting polarized waveguiding properties, which is found to be dependent on the ordered alignment of PDA chains, but not on the propagating distance or the wavelength of the excitation light. Moreover, three PDA‐PS microfibers with different polarized waveguiding behavior can be assembled together as polarization sensitive photoreceptors to mimic the natural rhabdome arrays in insect eyes, since the physical dimensions, structure, and function of single PDA‐PS microfiber are comparable to that of natural rhabdomere.

  相似文献   


4.
A gas‐permeable cellulose template for microimprint lithography has been synthesized and characterized for the reduction of template damage and gas trapping caused by solvents and oxygen generated from cross‐linked materials. The 5 μm line‐pattern failure of the microimprinted UV cross‐linked liquid materials with 4.7 wt% acetone as a volatile solvent is solved by using the gas‐permeable cellulose template because of its increased oxygen permeability. The gas‐permeable cellulose template also allows the use of volatile solvents with high coating property and solubility into the microimprinted materials instead of the compounds and plastic resins conventionally used in mold injection.

  相似文献   


5.
Flexible sensors capable of detecting large strain are very useful for health monitoring and sport applications. Here a strain sensor is prepared by applying a thin layer of conducting polymer, polypyrrole (PPy), onto the fiber surface of an elastic fibrous membrane, electrospun polydimethylsiloxane (PDMS). The sensor shows a normal monotonic resistance response to strain in the range of 0–50%, but the response becomes “on‐off switching” mode when the strain is between 100 and 200%. Both response modes are reversible and can work repeatedly for many cycles. This unique sensing behavior is attributed to overstretching of the polypyrrole coating, unique fibrous structure, and elasticity of PDMS fibers. It may be useful for monitoring the states where motions are only allowed in a particular range such as joint rehabilitation.

  相似文献   


6.
Hydrophobic and super‐hydrophobic materials have many important applications, but most of the artificially hydrophobic and super‐hydrophobic surfaces suffer from poor durability. Herein, a facile method is reported to fabricate robust hydrophobic and super‐hydrophobic polymer films through backfilling the silica colloidal crystal templates with the mixture of fluoropolymer, thermoset hydroxyl acrylate resins, and curing agent. After removal of the template, 3D ordered porous structures are obtained. The obtained polymer films have not only excellent hydrophobic or super‐hydrophobic properties but also good stability against temperatures, acids, and alkalis. Dual ordered porous structure can obviously enhance the hydrophobicity of polymer films compared to unitary one.

  相似文献   


7.
A new facile approach for the fabrication of polymer‐Ag honeycomb film is reported. A polymer‐Ag+ honeycomb thin film is obtained by casting a CHCl3 solution of a functional graft copolymer on aqueous silver nitrate solution, leading to metal complexation induced phase separation at the air/water interface. The film is reduced by UV irradiation to give a polymer‐Ag honeycomb film with regular morphology. Pyrolysis of the film gives a translucent Ag honeycomb film.

  相似文献   


8.
The introduction of nanodiamond particles (NDs) in silane‐crosslinked polyethylene is found to lead to a notable and systematic deformation of the polymer unit cell. X‐ray diffraction evidence of the existence of a modified crystalline structure in the bulk of the polymer due to the presence of NDs is reported here for the first time. The covalent bonding between NDs and the surrounding macromolecular chains may support that the excessive local stress field ultimately distorts the polymer conformation, yielding a new distorted but still crystalline interface. Supporting data from solid‐state NMR experiments confirm the existence of a modified crystalline interface of about 1–2 nm in all the nanocomposite materials.

  相似文献   


9.
The previously introduced process for enzyme‐mediated in situ synthesis and deposition of eumelanin is investigated with covalent immobilization of the tyrosinase. It results in a monolayer structure of non‐coalesced melanin particles, with a film thickness of 5–8 nm. The reaction is self‐terminating due to overlay of the enzymes with particles. The melanin particles are rodlike with lengths down to 6 nm. Isolated melanin structures of such small size have not been observed before and might be a kind of protoparticle in the supramolecular buildup of melanin oligomers. Utilization of melanin particles with such small size can enable nanotechnological applications in the areas of bioelectronics and biosensors.

  相似文献   


10.
We report a novel method for oil/water separation using stainless steel meshes functionalized with amphiphilic copolymer, poly(methacrylic acid‐co‐ethylhexylmethacrylate) (PMAA‐co‐EHMA), brushes. Because the PMAA‐co‐EHMA brush‐covered surfaces show a large contact angle hysteresis at the oil/water contact line, the meshes can be programmed to act as either water‐selective or oil‐selective filters simply by pre‐wetting the mesh with one of these liquids. These programmable meshes can separate oil/water mixtures to high filtrate purities (more than 99 % mol/mol) in both oil‐selective and water‐selective modes.

  相似文献   


11.
Light triggered soft actuator in aqueous media has applications in operating underwater objects, creating liquid flow, and adjusting reaction velocity, etc. Here, composites prepared from commercial materials, poly[ethylene‐ran‐(vinyl acetate)] (EVA) and aniline black (AB), are reported as one cost efficient material for preparing such actuator, where EVA and AB work respectively as shape‐memory polymer matrix and near‐infrared light triggered photothermal filler. Upon irradiation, the temperature of the composites increases greatly with light power density and AB content. Light‐induced shape‐memory effect (SME) with recovery ratio >98%, temperature‐memory effect (TME), and reversible bidirectional shape‐memory effect (rbSME) of the prepared composites in air are realized. Higher light power density is required to trigger the shape recovery in aqueous media, while good SME, TME, and rbSME are also achieved. Releasing device and gripper are used to indicate the feasibility of the composites as light triggered soft underwater actuators.

  相似文献   


12.
Using a technique called solution blow spinning, polyurethane–carbon nanotube‐based composite nanofibers are fabricated. These composite nanofibers exhibit uniform diameter, even with increasing polyurethane density, with the use of a dual‐solvent mixture during spinning. It is possible to produce the fibers at a high production rate even after the addition of a large amount of carbon nanotubes with a uniform size distribution of 300–400 nm. In addition, for composites with 3 wt% carbon nanotubes, the tensile strength, elongation, and elastic strain energy increase to 102, 166, and 167%, respectively, compared to pure PU nanofibers. The thermal stability improves as well. The prepared composite nanofibers could potentially be used as an inter‐reinforcing agent in carbon‐fiber‐reinforced plastics and as a buffer, and in the biomedical field.

  相似文献   


13.
A versatile approach to synthesis of hydrophobic polymeric cryogels is proposed using acetic acid crystals instead of ice crystals as porogen through cryo‐polymerization. In the range of 60 to 90 vol% of acetic acid, polymerization at ambient temperature gives rise to particulate polymers in beaded or amorphous shape, while polymerization at 4 °C, lower than the melting point of acetic acid (16.6 °C), leads to the formation of cryogel‐like monoliths with supermacroporous structure, which is mainly ascribed to cryo‐concentration effect. According to the measurements by scanning electron microscopy and mercury intrusion porosimetry, the dried samples are supermacroporous with pore size mainly ranging from several micrometers to several hundred micrometers, which can be feasible for rapid mass transfer. The forming cryogels display a superfast responsiveness to organic solvents, possibly stemming from their supermacroporosity and distinctive hydrophobicity.

  相似文献   


14.
One major challenge of biomaterial engineering is to mimic the mechanical properties of anisotropic, multifunctional natural soft tissues. Existing solutions toward controlled anisotropy include the use of oriented reinforcing fillers, with complicated interface issues, or UV‐curing processing through patterned masks, that makes use of harmful photosensitive molecules. Here, a versatile process to manufacture biocompatible silicone elastomer membranes by light degradation of the platinum catalyst prior to thermal cross‐linking is presented. The spatial control of network density is demonstrated by experimental and theoretical characterizations of the mechanical responses of patterned cross‐linked membranes, with a view to mimic advanced implantable materials.

  相似文献   


15.
Flexible polymers such as poly dimethyl siloxane (PDMS) can be patterned at the micro‐ and nanoscale by casting, for a variety of applications. This replication‐based fabrication process is relatively cheap and fast, yet injection molding offers an even faster and cheaper alternative to PDMS casting, provided thermoplastic polymers with similar mechanical properties can be used. In this paper, a thermoplastic polyurethane is evaluated for its patterning ability with an aim to forming the type of flexible structures used to measure and modulate the contractile forces of cells in tissue engineering experiments. The successful replication of grating structures is demonstrated with feature sizes as low as 100 nm and an analysis of certain processing conditions that facilitate and enhance the accuracy of this replication is presented. The results are benchmarked against an optical storage media grade polycarbonate.

  相似文献   


16.
The molecular anisotropy that is developed in microscale, centrifugally spun atactic‐polystyrene fibers prepared from the solution state is examined. Small angle neutron scattering is utilised to examine the molecular orientation of the polymer chain conformation in centrifugally spun fiber samples and comparisons are made to anisotropy developed in electrospun fiber samples. The average values of molecular anisotropy developed in the centrifugally spun fibers measured a ratio of the radius of gyration parallel to‐/perpendicular to‐ the fiber axis as 1.02, lower than the average of 1.05 observed for the electrospinning process. The highest level of anisotropy observed for the centrifugally spun fiber samples is ≈1.04, compared with a value of 1.063 for electrospinning. A model of chain anisotropy development in the centrifugal spinning process relating to the tangential speed and solvent evaporation is described.

  相似文献   


17.
Detection methods for heavy metals are important and highly required due to their toxicity to the health of humans and the environment. Hence, using a polydiacetylene (PDA)‐based sensoring bead, the presence of barium ions is exclusively detected for the first time. The sensoring platform has been designed as a PDA vesicle functionalized with a succinoglycan octasaccharide subunit serving as a metal coordination ligand. First, the succinoglycan octasaccahride subunit is isolated from Sinorhizobium meliloti, successfully conjugated to pentacosa‐10,12‐diynoic acid via reductive amination, and the functionalized vesicle system is investigated for color and fluorescence changes targeting nine different metal ions. To further improve the long‐term storage stability and convenient handling of the vesicle detection system, the sensory vesicle is immobilized on millimeter‐sized alginate beads through the ionotropic gelation method. This study provides an opportunity to design and develop various carbohydrate‐based sensor materials.

  相似文献   


18.
Segmental polyurethanes (PU) with hydrophilic segments form colloidal dispersions which are ultimately arrested into gel‐like structure in aqueous continuous phase owing to the differential interactions between polymer and solvent. These structural states of amphiphilic PUs evolve hierarchically, but the structure‐function correlation between PU colloidal dispersion and gels is not clear. Here, this correlation is defined from the mechanomorphology of hydrophilic polyethylene glycol based PU which forms dispersions and finally transforms into gel‐structure. Morphological and rheological analyses show that PU with comparable hydrophilic and hydrophobic content forms attractive colloids with self‐similar fractal microstructures whereas PU with increased hydrophilic character forms space‐filling colloids without any defined organization. Furthermore, colloidal dispersions are densified under shear or gravity to form gel where gel mechanics is defined by colloidal particle organization and the morphology is dependent on gelation mode. This stepwise organization of PU colloidal particles into microgel can independently control microgel mechanics and morphology.

  相似文献   


19.
The polyacrylonitrile/polymethyl‐methacrylate (PMMA/PAN) porous fibers, core–shell hollow fibers, and porous thin films are prepared by coaxial electrospinning, single electrospinning, and spin‐coating technologies, respectively. The different morphologies arising from different processes display great influences on their thermal and crystalline properties. The adding of PMMA causes porous structure due to the microphase‐separation structure of immiscible PMMA and PAN phases. The lower weight loss, higher degradation temperature, and glass‐transition temperatures of porous thin films than those of porous fibers and core–shell hollow fibers are obtained, evidencing that the polymer morphologies produced from the different process can efficiently influence their physical properties. The orthorhombic structure of PAN crystals are found in the PMMA/PAN porous thin films, but the rotational disorder PAN crystals due to intermolecular packing are observed in the PMMA/PAN porous fibers and core–shell hollow fibers, indicating that different processes cause different types of PAN crystals.

  相似文献   


20.
Silicone‐based elastomers are promising materials for future dielectric elastomer actuators. To ensure optimum performance and the long‐term reliability of the actuators, it is essential to gain a fundamental understanding of the correlation between the elastomer's network structure and the mechanical and electrical responses of the material. For this purpose, mechanical and electrical tests are performed on a series of silicone elastomer films with different crosslinking densities, which are prepared by changing the stoichiometric imbalance of the network. It is determined that higher cross‐linking density leads to a higher elastic modulus and a longer fatigue lifetime, whereas reduced permittivity is observed because of lower chain mobility. Dielectric breakdown strength is also observed to increase in line with increasing cross‐linking density, and the variations in relation to the measured elastic modulus and permittivity agree well with the Stark–Garton model based on electromechanical instability.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号