首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrylonitrile–butadiene–styrene (ABS) is a polymer composing of acrylonitrile, butadiene, and styrene. It has been widely used in industry because of its good mechanical and physical properties. The fabrication of ABS fibers, however, has been rarely studied. Here the fabrication of ABS fibers has been reported by an electrospinning technique, in which the sizes and morphologies of the fibers can be controlled by adjusting the electrospinning conditions. The morphologies of the ABS fibers can also be transformed by annealing the fibers on poly (methyl methacrylate) (PMMA) films. After annealing, the ABS fibers gradually transform to ABS particles embedded in the PMMA films by a mechanism similar to the Rayleigh‐instability‐type transformation. To extend the applications of the electrospun ABS fibers, electroless deposition of copper is also conducted, resulting in copper‐coated ABS fibers.

  相似文献   


2.
The effect of varying electrospinning parameters is reported for the production of collagen nanofibers from acetic acid with controlled fiber diameter, orientation, and mechanical properties. Nanofibers with a range of diameters of 175–400 nm are obtained by varying either the voltage or the flow rate. An increase in nanofiber alignment is observed by increasing injection flow rate. Mechanical testing of these fibers reveals that the elasticity modulus can be tuned in the range of 2.7–4.1 MPa by the selection of the crosslinking method. Fourier transform infrared spectroscopy reveals that the secondary structure of collagen is preserved after electrospinning and crosslinking. Lastly, in vitro testing reveals that a high number of fibroblasts attach to the collagen matrices indicating, that they are suitable for mammalian cell culture.

  相似文献   


3.
The polyacrylonitrile/polymethyl‐methacrylate (PMMA/PAN) porous fibers, core–shell hollow fibers, and porous thin films are prepared by coaxial electrospinning, single electrospinning, and spin‐coating technologies, respectively. The different morphologies arising from different processes display great influences on their thermal and crystalline properties. The adding of PMMA causes porous structure due to the microphase‐separation structure of immiscible PMMA and PAN phases. The lower weight loss, higher degradation temperature, and glass‐transition temperatures of porous thin films than those of porous fibers and core–shell hollow fibers are obtained, evidencing that the polymer morphologies produced from the different process can efficiently influence their physical properties. The orthorhombic structure of PAN crystals are found in the PMMA/PAN porous thin films, but the rotational disorder PAN crystals due to intermolecular packing are observed in the PMMA/PAN porous fibers and core–shell hollow fibers, indicating that different processes cause different types of PAN crystals.

  相似文献   


4.
The mechanical properties and microstructure of injection molded isotactic polypropylene parts with high orientation before and after annealing are analyzed. The mechanical properties of the annealed samples are improved effectively. Through thorough analysis of various structural characterizations, a microstructural model based on the fact that the total length of long period kept constant to analyze the variation of mechanical properties is proposed. It is suggested that the increase of overall crystallinity, the recombination of crystalline phase, and the increase of amorphous phase, respectively, are beneficial for the improvements of the strength, stiffness, and toughness of annealed samples.

  相似文献   


5.
Electrospinning of sulfur‐free softwood lignin (SFSL) in N,N‐dimethylformamide (DMF) is reported as is and with poly(ethylene oxide) (PEO). SFSL macromolecules behave as rigid spheres, instead of free draining macromolecules in DMF. Hence they are investigated as colloids. Colloidal SFSL generates uniform fibers only at the volume fraction of 0.63. It is due to the sufficiently high longest mean relaxation time at the volume fraction of 0.63. Colloidal SFSL below the volume fraction of 0.63 does not exhibit any measurable viscoelasticity and also does not generate any uniform fibers. Bead‐free fibers are generated at volume fractions below 0.63 only by adding PEO. PEO presence brings elasticity to colloidal SFSL and produces bead‐free fibers only above the entanglement concentration of PEO in DMF. The presence of SFSL macromolecules does not cause any interactions with PEO molecules, except it reduces the available of free volume for PEO chains in DMF.

  相似文献   


6.
The previously introduced process for enzyme‐mediated in situ synthesis and deposition of eumelanin is investigated with covalent immobilization of the tyrosinase. It results in a monolayer structure of non‐coalesced melanin particles, with a film thickness of 5–8 nm. The reaction is self‐terminating due to overlay of the enzymes with particles. The melanin particles are rodlike with lengths down to 6 nm. Isolated melanin structures of such small size have not been observed before and might be a kind of protoparticle in the supramolecular buildup of melanin oligomers. Utilization of melanin particles with such small size can enable nanotechnological applications in the areas of bioelectronics and biosensors.

  相似文献   


7.
Most insect eyes use microvillar photoreceptors, where the visual pigment rhodopsin is aligned within tubular microvilli, endowing the insects with amazing navigation ability through detecting the polarization of illuminating light in the sky. Herein, polydiacetylene‐polystyrene (PDA‐PS) hybrid microfibers are fabricated by electrospinning method and it is demonstrated that PDA‐PS hybrid microfibers exhibit interesting polarized waveguiding properties, which is found to be dependent on the ordered alignment of PDA chains, but not on the propagating distance or the wavelength of the excitation light. Moreover, three PDA‐PS microfibers with different polarized waveguiding behavior can be assembled together as polarization sensitive photoreceptors to mimic the natural rhabdome arrays in insect eyes, since the physical dimensions, structure, and function of single PDA‐PS microfiber are comparable to that of natural rhabdomere.

  相似文献   


8.
The introduction of nanodiamond particles (NDs) in silane‐crosslinked polyethylene is found to lead to a notable and systematic deformation of the polymer unit cell. X‐ray diffraction evidence of the existence of a modified crystalline structure in the bulk of the polymer due to the presence of NDs is reported here for the first time. The covalent bonding between NDs and the surrounding macromolecular chains may support that the excessive local stress field ultimately distorts the polymer conformation, yielding a new distorted but still crystalline interface. Supporting data from solid‐state NMR experiments confirm the existence of a modified crystalline interface of about 1–2 nm in all the nanocomposite materials.

  相似文献   


9.
Silicone materials are widely used in many fields such as electrical or food industries and their consumption is constantly growing. They are generally cured by vulcanization reaction for long time at high temperatures which requires high energy consumption. The possibility to achieve the polymerization of silicone rubbers by UV‐activation promotes the reduction of both time and temperature leading to an impressive energy saving. Indeed, this process is more than 30 times faster than the thermal one. Moreover, the properties of the two resulting materials are comparable, indicating that the low time of UV‐activated hydrosilation reaction is suitable for the formation of crosslinked silicone polymers.

  相似文献   


10.
A new facile approach for the fabrication of polymer‐Ag honeycomb film is reported. A polymer‐Ag+ honeycomb thin film is obtained by casting a CHCl3 solution of a functional graft copolymer on aqueous silver nitrate solution, leading to metal complexation induced phase separation at the air/water interface. The film is reduced by UV irradiation to give a polymer‐Ag honeycomb film with regular morphology. Pyrolysis of the film gives a translucent Ag honeycomb film.

  相似文献   


11.
The molecular anisotropy that is developed in microscale, centrifugally spun atactic‐polystyrene fibers prepared from the solution state is examined. Small angle neutron scattering is utilised to examine the molecular orientation of the polymer chain conformation in centrifugally spun fiber samples and comparisons are made to anisotropy developed in electrospun fiber samples. The average values of molecular anisotropy developed in the centrifugally spun fibers measured a ratio of the radius of gyration parallel to‐/perpendicular to‐ the fiber axis as 1.02, lower than the average of 1.05 observed for the electrospinning process. The highest level of anisotropy observed for the centrifugally spun fiber samples is ≈1.04, compared with a value of 1.063 for electrospinning. A model of chain anisotropy development in the centrifugal spinning process relating to the tangential speed and solvent evaporation is described.

  相似文献   


12.
This article deals with the amine blush phenomenon in epoxy coatings. Amine blush is due to amine carbonation and weakens the visual aspect of room temperature epoxy coatings. This paper describes a way to avoid the carbonation by preparing aminotelechelic prepolymers is described. For the first time, the amine‐adduct impact over amine carbonation, as well as the amine decarbonation with temperature, has been investigated by infrared spectroscopy. Moreover, a range of epoxy materials displaying various Tg are synthesized from amine‐adducts and compared to polyurethane references generally used for transparent coating applications. Mechanical and thermal properties are also investigated.

  相似文献   


13.
Barrier membranes used for the treatment of bone tissue defects caused by periodontitis lack the ability to promote new bone tissue regeneration. However, the addition of an osteogenic component to membranes may enhance their regenerative potential. Here the manufacturing of composite membranes made of poly(caprolactone) and strontium‐substituted bioactive glass is described using the solution‐electrospinning technique, with particles located both inside and on the surface of the fibers. All membranes are characterized using scanning electron microscopy and energy dispersive X‐ray spectroscopy, and glass dissolution from within the fibers is investigated in water. In vitro material cytotoxicity is determined using a rat osteosarcoma cell line. Electrospun fibers exhibit porous surfaces and regions of increased diameter where the particles are accumulated. The glass dissolves after immersion in water, releasing dissolution products that are associated with increased pH. Further evidence suggests accelerated polymer degradation due to interactions between both components, which may provide the additional benefit of reducing the pH changes associated with glass dissolution. All compositions are biocompatible in vitro, with the exception of membranes with >50 μg of glass on their surface. In conclusion, these membranes show great potential for bone healing applications, including guided bone regeneration and scaffolds for musculoskeletal tissue engineering.

  相似文献   


14.
Recent advances in clinical practice drive deoxyribonucleic acid (DNA) as an important class of biomarker. Monitoring the change in their concentration suggests the initiation and/or progression of various disorders. However, low quantity of DNA biomarkers in body fluids requires a delicate isolation methodology that provides efficient separation and easy handling. This study describes a newer‐generation separation technology relying on electrospun fibers of sub‐micrometer diameter of a commodity polymer for DNA biomarkers in simulative serum. Fibrous polystyrene membranes are prepared by electrospinning and they are subjected to post‐modification with Au. The composite membranes may provide a convenient environment for the removal of bovine serum albumin (BSA) from BSA and DNA mixtures. The eluent can be used as an efficient tool for detection of DNA biomarkers associated with diagnosis of numerous life‐threatening diseases.

  相似文献   


15.
Hydrophobic and super‐hydrophobic materials have many important applications, but most of the artificially hydrophobic and super‐hydrophobic surfaces suffer from poor durability. Herein, a facile method is reported to fabricate robust hydrophobic and super‐hydrophobic polymer films through backfilling the silica colloidal crystal templates with the mixture of fluoropolymer, thermoset hydroxyl acrylate resins, and curing agent. After removal of the template, 3D ordered porous structures are obtained. The obtained polymer films have not only excellent hydrophobic or super‐hydrophobic properties but also good stability against temperatures, acids, and alkalis. Dual ordered porous structure can obviously enhance the hydrophobicity of polymer films compared to unitary one.

  相似文献   


16.
Suitable membranes for blood‐contacting medical applications need to be resistant in confrontation with blood proteins and cells, while possessing high blood compatibility and permeability at the same time. Herein, an overview of the recent advances and strategies that have been used to enhance the hemocompatibility of polymeric membranes is provided. The review focuses on two modification strategies: (i) physical modifications and (ii) chemical modifications. It also highlights the current progress in the design of hemocompatible‐functionalized membranes for biomedical applications. Subsequently, the commonly applied biocompatibility tests are also discussed and finally the future perspectives of the application of polymeric membranes in the biomedical field are presented.

  相似文献   


17.
Mechanically robust and self‐healing rubbers are highly desired to satisfy the increasing demand of high‐performance smart tires and related materials. Herein, a self‐healing rubber nanocomposite with enhanced mechanical and self‐healing performance based on Diels–Alder chemistry has been investigated. The furfuryl grafted styrene‐butadiene rubber and furfuryl terminated MWCNT (MWCNT‐FA) are reacted with bifunctional maleimide to form a covalently bonded and reversibly cross‐linked rubber composite. Obvious reinforcing effect is obtained at high cross‐linking density. Over 200–300% increase in the Young's modulus and toughness can be achieved in the rubber nanocomposites with 5 wt% MWCNT‐FA. Meanwhile, the healing efficiency increased with MWCNT‐FA content. MWCNT‐FA plays dual roles of effective reinforcer and a kind of healant.

  相似文献   


18.
Flexible sensors capable of detecting large strain are very useful for health monitoring and sport applications. Here a strain sensor is prepared by applying a thin layer of conducting polymer, polypyrrole (PPy), onto the fiber surface of an elastic fibrous membrane, electrospun polydimethylsiloxane (PDMS). The sensor shows a normal monotonic resistance response to strain in the range of 0–50%, but the response becomes “on‐off switching” mode when the strain is between 100 and 200%. Both response modes are reversible and can work repeatedly for many cycles. This unique sensing behavior is attributed to overstretching of the polypyrrole coating, unique fibrous structure, and elasticity of PDMS fibers. It may be useful for monitoring the states where motions are only allowed in a particular range such as joint rehabilitation.

  相似文献   


19.
A versatile approach to synthesis of hydrophobic polymeric cryogels is proposed using acetic acid crystals instead of ice crystals as porogen through cryo‐polymerization. In the range of 60 to 90 vol% of acetic acid, polymerization at ambient temperature gives rise to particulate polymers in beaded or amorphous shape, while polymerization at 4 °C, lower than the melting point of acetic acid (16.6 °C), leads to the formation of cryogel‐like monoliths with supermacroporous structure, which is mainly ascribed to cryo‐concentration effect. According to the measurements by scanning electron microscopy and mercury intrusion porosimetry, the dried samples are supermacroporous with pore size mainly ranging from several micrometers to several hundred micrometers, which can be feasible for rapid mass transfer. The forming cryogels display a superfast responsiveness to organic solvents, possibly stemming from their supermacroporosity and distinctive hydrophobicity.

  相似文献   


20.
Interfacial polymerization of dopamine and terephtaloyl chloride is performed on a porous crosslinked polyacrylonitrile support membrane. The resulting polymer layer has a smooth surface and is ultrathin (about 5 nm). The chemical nature of the interfacially polymerized layer is characterized by Fourier transform infrared spectroscopy and by X‐ray photoelectron spectroscopy. The thin‐film composite membrane is stable in aggressive solvents like dimethylformamide (DMF) and the membrane shows high solvent permeances combined with a molecular weight cut‐off below 800 g mol‐1. The remarkable stability in DMF, the ease of preparation as well as the extremely thin and smooth selective layer make this new type of bioinspired membrane attractive for solvent resistant nanofiltration.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号