首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Silicone materials are widely used in many fields such as electrical or food industries and their consumption is constantly growing. They are generally cured by vulcanization reaction for long time at high temperatures which requires high energy consumption. The possibility to achieve the polymerization of silicone rubbers by UV‐activation promotes the reduction of both time and temperature leading to an impressive energy saving. Indeed, this process is more than 30 times faster than the thermal one. Moreover, the properties of the two resulting materials are comparable, indicating that the low time of UV‐activated hydrosilation reaction is suitable for the formation of crosslinked silicone polymers.

  相似文献   


2.
The introduction of nanodiamond particles (NDs) in silane‐crosslinked polyethylene is found to lead to a notable and systematic deformation of the polymer unit cell. X‐ray diffraction evidence of the existence of a modified crystalline structure in the bulk of the polymer due to the presence of NDs is reported here for the first time. The covalent bonding between NDs and the surrounding macromolecular chains may support that the excessive local stress field ultimately distorts the polymer conformation, yielding a new distorted but still crystalline interface. Supporting data from solid‐state NMR experiments confirm the existence of a modified crystalline interface of about 1–2 nm in all the nanocomposite materials.

  相似文献   


3.
Interfacial polymerization of dopamine and terephtaloyl chloride is performed on a porous crosslinked polyacrylonitrile support membrane. The resulting polymer layer has a smooth surface and is ultrathin (about 5 nm). The chemical nature of the interfacially polymerized layer is characterized by Fourier transform infrared spectroscopy and by X‐ray photoelectron spectroscopy. The thin‐film composite membrane is stable in aggressive solvents like dimethylformamide (DMF) and the membrane shows high solvent permeances combined with a molecular weight cut‐off below 800 g mol‐1. The remarkable stability in DMF, the ease of preparation as well as the extremely thin and smooth selective layer make this new type of bioinspired membrane attractive for solvent resistant nanofiltration.

  相似文献   


4.
Hydrophobic and super‐hydrophobic materials have many important applications, but most of the artificially hydrophobic and super‐hydrophobic surfaces suffer from poor durability. Herein, a facile method is reported to fabricate robust hydrophobic and super‐hydrophobic polymer films through backfilling the silica colloidal crystal templates with the mixture of fluoropolymer, thermoset hydroxyl acrylate resins, and curing agent. After removal of the template, 3D ordered porous structures are obtained. The obtained polymer films have not only excellent hydrophobic or super‐hydrophobic properties but also good stability against temperatures, acids, and alkalis. Dual ordered porous structure can obviously enhance the hydrophobicity of polymer films compared to unitary one.

  相似文献   


5.
The present work focuses on the influence of nucleation processes on the crystallization of bio‐based poly(ethylene 2,5‐furandicarboxylate) (PEF). Nuclei formation has been studied by means of fast scanning calorimetry (FSC) both when cooling from the melt (nonisothermal conditions) and when annealing at either low‐ or high‐temperatures (isothermal conditions). FSC results show that nucleation on cooling can be prevented by using fast rates allowing to keep the polymer in its amorphous state; whereas cooling at moderate rates results in sample nucleation with a subsequent increase of the crystallization rate. Isothermal pretreatment just above the PEF glass transition temperature (Tg) results in nuclei formation whose rate decreases when the nucleation temperature approaches PEF Tg. On the other hand, annealing below the PEF melting point allows determination of the sample self‐nucleation behavior which occurs in a very narrow temperature range, i.e., between 195 and 198 °C.

  相似文献   


6.
A new facile approach for the fabrication of polymer‐Ag honeycomb film is reported. A polymer‐Ag+ honeycomb thin film is obtained by casting a CHCl3 solution of a functional graft copolymer on aqueous silver nitrate solution, leading to metal complexation induced phase separation at the air/water interface. The film is reduced by UV irradiation to give a polymer‐Ag honeycomb film with regular morphology. Pyrolysis of the film gives a translucent Ag honeycomb film.

  相似文献   


7.
Colloidal assemblies of inorganic nanoparticles dispersed in liquid media hold particular promise for the creation of a unique class of functional materials with innovative applications. In the present report, “compound‐eye”‐like core–shell and Janus‐type silica and amino‐terminated 1,2‐polybutadiene (PB‐NH2) and polystyrene (PS) composite microspheres are successfully prepared by simply mixing an aqueous dispersion of silica particles into a tetrahydrofran (THF) solution of PB‐NH2, and PB‐NH2 and PS blends, followed by evaporation of the THF. This co‐precipitation process provides a new approach for producing organic–inorganic composite particles without the need for surface modification of the inorganic nanoparticles.

  相似文献   


8.
Nanofiber‐based hydrocolloid scaffold is prepared by colloid electrospinning of thermoplastic polyurethane (TPU)/sodium carboxymethyl cellulose (S.CMC) in tetrahydrofuran (THF)/dimethylformamide (DMF). The most suitable process of electrospinning for successful formation of fibers is investigated by controlling the concentration of polymeric solution and co‐solvent ratio. In order to accomplish high wettability, the amount of colloid (S.CMC) and the co‐solvent ratio (THF/DMF), which affects the morphology of fibers, are adjusted. Finally, the open wound healing effect is confirmed using nanofiber‐hydrocolloid from in vivo animal studies. A detailed study of the wound healing process is also demonstrated for the first time.

  相似文献   


9.
Preparation of novel nanocomposite hydrogels opens up new avenues to next generation of biocompatible materials to be used in bioengineering and drug delivery. Toward this goal, chitosan nanocomposite hydrogels using click chemistry inspired cross‐linking are prepared. To enable this, Diels–Alder reaction of furan‐containing chitosan and maleimide‐coated gold nanoparticles is employed. The viscoelastic properties of the obtained nanocomposites as well as the effect of the nanoparticles as cross‐linkers are studied, indicating that they play significant role in hydrogel formation and stability. Nanoparticle‐enriched hydrogels are also found to demonstrate pH‐sensitivity therefore showing their potential for future biosensing applications.

  相似文献   


10.
The polyacrylonitrile/polymethyl‐methacrylate (PMMA/PAN) porous fibers, core–shell hollow fibers, and porous thin films are prepared by coaxial electrospinning, single electrospinning, and spin‐coating technologies, respectively. The different morphologies arising from different processes display great influences on their thermal and crystalline properties. The adding of PMMA causes porous structure due to the microphase‐separation structure of immiscible PMMA and PAN phases. The lower weight loss, higher degradation temperature, and glass‐transition temperatures of porous thin films than those of porous fibers and core–shell hollow fibers are obtained, evidencing that the polymer morphologies produced from the different process can efficiently influence their physical properties. The orthorhombic structure of PAN crystals are found in the PMMA/PAN porous thin films, but the rotational disorder PAN crystals due to intermolecular packing are observed in the PMMA/PAN porous fibers and core–shell hollow fibers, indicating that different processes cause different types of PAN crystals.

  相似文献   


11.
A versatile approach to synthesis of hydrophobic polymeric cryogels is proposed using acetic acid crystals instead of ice crystals as porogen through cryo‐polymerization. In the range of 60 to 90 vol% of acetic acid, polymerization at ambient temperature gives rise to particulate polymers in beaded or amorphous shape, while polymerization at 4 °C, lower than the melting point of acetic acid (16.6 °C), leads to the formation of cryogel‐like monoliths with supermacroporous structure, which is mainly ascribed to cryo‐concentration effect. According to the measurements by scanning electron microscopy and mercury intrusion porosimetry, the dried samples are supermacroporous with pore size mainly ranging from several micrometers to several hundred micrometers, which can be feasible for rapid mass transfer. The forming cryogels display a superfast responsiveness to organic solvents, possibly stemming from their supermacroporosity and distinctive hydrophobicity.

  相似文献   


12.
The previously introduced process for enzyme‐mediated in situ synthesis and deposition of eumelanin is investigated with covalent immobilization of the tyrosinase. It results in a monolayer structure of non‐coalesced melanin particles, with a film thickness of 5–8 nm. The reaction is self‐terminating due to overlay of the enzymes with particles. The melanin particles are rodlike with lengths down to 6 nm. Isolated melanin structures of such small size have not been observed before and might be a kind of protoparticle in the supramolecular buildup of melanin oligomers. Utilization of melanin particles with such small size can enable nanotechnological applications in the areas of bioelectronics and biosensors.

  相似文献   


13.
The mechanical properties and microstructure of injection molded isotactic polypropylene parts with high orientation before and after annealing are analyzed. The mechanical properties of the annealed samples are improved effectively. Through thorough analysis of various structural characterizations, a microstructural model based on the fact that the total length of long period kept constant to analyze the variation of mechanical properties is proposed. It is suggested that the increase of overall crystallinity, the recombination of crystalline phase, and the increase of amorphous phase, respectively, are beneficial for the improvements of the strength, stiffness, and toughness of annealed samples.

  相似文献   


14.
Mechanically robust and self‐healing rubbers are highly desired to satisfy the increasing demand of high‐performance smart tires and related materials. Herein, a self‐healing rubber nanocomposite with enhanced mechanical and self‐healing performance based on Diels–Alder chemistry has been investigated. The furfuryl grafted styrene‐butadiene rubber and furfuryl terminated MWCNT (MWCNT‐FA) are reacted with bifunctional maleimide to form a covalently bonded and reversibly cross‐linked rubber composite. Obvious reinforcing effect is obtained at high cross‐linking density. Over 200–300% increase in the Young's modulus and toughness can be achieved in the rubber nanocomposites with 5 wt% MWCNT‐FA. Meanwhile, the healing efficiency increased with MWCNT‐FA content. MWCNT‐FA plays dual roles of effective reinforcer and a kind of healant.

  相似文献   


15.
A gas‐permeable cellulose template for microimprint lithography has been synthesized and characterized for the reduction of template damage and gas trapping caused by solvents and oxygen generated from cross‐linked materials. The 5 μm line‐pattern failure of the microimprinted UV cross‐linked liquid materials with 4.7 wt% acetone as a volatile solvent is solved by using the gas‐permeable cellulose template because of its increased oxygen permeability. The gas‐permeable cellulose template also allows the use of volatile solvents with high coating property and solubility into the microimprinted materials instead of the compounds and plastic resins conventionally used in mold injection.

  相似文献   


16.
Mechanical properties and fracture mechanisms of Novatein thermoplastic protein and blends with core–shell particles (CSPs) have been examined. Novatein is brittle with low impact strength and energy‐to‐break. Epoxy‐modified CSPs increase notched and unnotched impact strength, tensile strain‐at‐break, and energy‐to‐break, while tensile strength and modulus decrease as CSP content increases. Tg increases slightly with increasing CSP content attributed to physical crosslinking. Changes to mechanical properties are related to the critical matrix ligament thickness and rate of loading. Novatein control samples display brittle fracture characterized by large‐scale crazing. At high CSP content a large plastic zone and a slow crack propagation zone in unnotched and tensile samples are observed suggesting increased energy absorption. Notched impact samples reach critical craze stresses easily regardless of CSP content reducing impact strength. It is concluded that the impact strength of thermoplastic protein can be modified in a similar manner to traditional thermoplastics.

  相似文献   


17.
Blends of polyamide 12 and small amounts (0.15–1 wt%) of the excimer‐forming fluorescent dye 1,4‐bis(α‐cyano‐4‐octadecyloxystyryl)‐2,5‐dimethoxybenzene (C18‐RG) are produced by melt‐processing. While green monomer fluorescence from well‐individualized chromophores is observed at low dye concentration (0.15%), higher dye concentrations lead to aggregation of the dye so that the emission characteristics are dominated by red excimer fluorescence. Upon mechanical deformation of samples with appropriately selected dye content (0.25 wt%), a pronounced mechanochromic effect can be observed, which manifests itself through a mechanically induced transformation from excimer‐dominated to monomer‐rich emission. The monomer to excimer emission ratio IM/IE is increased by a factor of up to 2 in a step‐wise manner when samples are uniaxially deformed past the yield point.

  相似文献   


18.
Recent advances in clinical practice drive deoxyribonucleic acid (DNA) as an important class of biomarker. Monitoring the change in their concentration suggests the initiation and/or progression of various disorders. However, low quantity of DNA biomarkers in body fluids requires a delicate isolation methodology that provides efficient separation and easy handling. This study describes a newer‐generation separation technology relying on electrospun fibers of sub‐micrometer diameter of a commodity polymer for DNA biomarkers in simulative serum. Fibrous polystyrene membranes are prepared by electrospinning and they are subjected to post‐modification with Au. The composite membranes may provide a convenient environment for the removal of bovine serum albumin (BSA) from BSA and DNA mixtures. The eluent can be used as an efficient tool for detection of DNA biomarkers associated with diagnosis of numerous life‐threatening diseases.

  相似文献   


19.
Dopamine is a molecule that facilitates biomineralization, and it is used to prepare electropolymerization‐induced polydopamine (PDA). For the first time, dopamine is used for template‐free electrochemical polymerization to form biocompatible polypyrrole (PPy) nanofiber coatings on bone implants. Dopamine monomers are electropolymerized to PDA chains affixed to biomedical titanium after the nanomicelles are tuned to self‐assemble by triggering the potential, resulting in nanofiber formation. Dopamine serves as a dopant to induce the formation of conductive PPy nanofibers and as a promoter to accelerate biomineralization, cell proliferation, and adhesion.

  相似文献   


20.
A polydimethylsiloxane (PDMS)‐based fluidic device with two flow channels is fabricated by using a rapid prototyping method. The PDMS‐based fluidic device is used to produce water‐in‐oil emulsion (W/O) droplets due to its intrinsic hydrophobicity. To produce uniform oil‐in‐water (O/W) emulsion droplets, the inner channel of the PDMS fluidic device is coated with polydopamine (PDA) by flowing a dopamine precursor in the water channel of the fluidic device. The PDA coating is confirmed by an increase in morphological roughness and nitrogen content. In addition, the contact angle of the PDMS surface decreases from 95° to 30° during PDA coating, suggesting that the inner surface of the fluidic device is hydrophilic. Uniform W/O and O/W emulsion droplets are produced by the pristine PDMS and PDA‐coated PDMS fluidic devices, respectively.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号