首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties and microstructure of injection molded isotactic polypropylene parts with high orientation before and after annealing are analyzed. The mechanical properties of the annealed samples are improved effectively. Through thorough analysis of various structural characterizations, a microstructural model based on the fact that the total length of long period kept constant to analyze the variation of mechanical properties is proposed. It is suggested that the increase of overall crystallinity, the recombination of crystalline phase, and the increase of amorphous phase, respectively, are beneficial for the improvements of the strength, stiffness, and toughness of annealed samples.

  相似文献   


2.
A conjugated polymer, poly(9,9‐bis(6‐bromohexyl)‐9H‐fluorene‐alt‐1,4‐phenylene), is synthesized, converted to nanoparticles via a nanoprecipitation process, and utilized to fabricate thin films including conjugated polymer nanoparticles. The nanoparticles with surface bromides can be conjugated with an amine‐functionalized dendrimer via a nucleophilic coupling reaction. Thus, when microliter solutions of the particulates are dragged at a constant velocity on substrates alternately in a layer‐by‐layer manner, thin films composed of the nanoparticles and dendrimers can be successfully built up on the substrates. Our results suggest a methodology to control the deposition of thin films bearing conjugated polymer nanoparticles while minimizing processing time and decreasing material consumption.

  相似文献   


3.
Thermal induced solid phase polymer reactions between bisphenol‐A‐based polycarbonate (PC) and polyvinylamine (PVAm) are used to form permanent composite material. The PC–PVAm interface is characterized by infrared (IR) spectroscopy. IR spectra of synthesized reference substances which can be expected after PC–PVAm reaction are recorded and used to identify amidation product structures within the PC–PVAm interphase. Curve fit analysis is performed to isolated sub‐bands. The spectral position of the carbonyl absorption band is a suitable marker for the identification of different amidation products. While the formation of urethane and cyclic Allophanate points to the formation of a co‐polymer cyclic Urea indicates a PC chain scission without binding between both polymer materials.

  相似文献   


4.
A simple method of preparing stimuli‐responsive polystyrene (PS)/polycaprolactone (PCL) nanolayered films with by growing poly(N‐isopropylacrylamide) (PNIPAM) brush on the surface by surface‐initiated polymerization is reported. Atom transfer radical polymerization (ATRP) initiator with a benzophenone moiety is attached onto the surface by UV irradiation. After ATRP polymerization, PNIPAM brush films with varying thicknesses are produced. X‐ray photoelectron spectroscopy (XPS) confirms the successful deposition of initiator and grafting of the polymer. Moreover, the behavior of the brush film as a function of temperature is demonstrated by contact angle experiments. Photopatterning is also achieved by using a photomask and is confirmed by Fourier Transform Infrared (FTIR) imaging.

  相似文献   


5.
In this study, a facile method about generating porous poly (l ‐lactide) (PLLA) materials with uniform morphology by gradual precipitation is reported. By adjusting the solvents, concentrations of polymer solution, and drying process, petal‐like PLLA nanosheets can be conveniently obtained, which can further form porous materials with tunable porosities (85–92%). X‐ray diffraction affirms that α‐form crystals of PLLA with high crystallinity (51.66% according to differential scanning calorimetry) can be obtained. Mechanical test shows that the compression modulus is tunable with values ranging from 1.76 to 19.98 MPa. Notably, because of its high porosity, interconnected pore structure, and tunable mechanical properties, these versatile porous materials are especially fit for being utilized in polymer scaffold field.

  相似文献   


6.
A new facile approach for the fabrication of polymer‐Ag honeycomb film is reported. A polymer‐Ag+ honeycomb thin film is obtained by casting a CHCl3 solution of a functional graft copolymer on aqueous silver nitrate solution, leading to metal complexation induced phase separation at the air/water interface. The film is reduced by UV irradiation to give a polymer‐Ag honeycomb film with regular morphology. Pyrolysis of the film gives a translucent Ag honeycomb film.

  相似文献   


7.
Suitable membranes for blood‐contacting medical applications need to be resistant in confrontation with blood proteins and cells, while possessing high blood compatibility and permeability at the same time. Herein, an overview of the recent advances and strategies that have been used to enhance the hemocompatibility of polymeric membranes is provided. The review focuses on two modification strategies: (i) physical modifications and (ii) chemical modifications. It also highlights the current progress in the design of hemocompatible‐functionalized membranes for biomedical applications. Subsequently, the commonly applied biocompatibility tests are also discussed and finally the future perspectives of the application of polymeric membranes in the biomedical field are presented.

  相似文献   


8.
Interfacial polymerization of dopamine and terephtaloyl chloride is performed on a porous crosslinked polyacrylonitrile support membrane. The resulting polymer layer has a smooth surface and is ultrathin (about 5 nm). The chemical nature of the interfacially polymerized layer is characterized by Fourier transform infrared spectroscopy and by X‐ray photoelectron spectroscopy. The thin‐film composite membrane is stable in aggressive solvents like dimethylformamide (DMF) and the membrane shows high solvent permeances combined with a molecular weight cut‐off below 800 g mol‐1. The remarkable stability in DMF, the ease of preparation as well as the extremely thin and smooth selective layer make this new type of bioinspired membrane attractive for solvent resistant nanofiltration.

  相似文献   


9.
In this study, polyamide 6/polystyrene in situ microfibrillar blends are prepared via anionic polymerization of ε‐caprolactam in a twin screw extruder. Scanning electron microscope analysis reveals that microfibrillated PA6 dispersed phase, which is continuous and preferentially oriented parallel to the extrusion direction, is in situ formed within polystyrene (PS) matrix during reactive extrusion at the content PS equal to 30 and 40 wt%. Mechanical properties analysis shows that the yield strength and elongation at break of PA6/PS (70/30 and 60/40) microfibrillar blends are remarkably increased with respect to those of pure PS. Also, the in situ fibrillation mechanisms are investigated by the analysis of morphological evolution. This work demonstrates a facile and efficient route to fabricate the microfibrillar blends with relatively high contents of polymer microfibrils.

  相似文献   


10.
Dopamine is a molecule that facilitates biomineralization, and it is used to prepare electropolymerization‐induced polydopamine (PDA). For the first time, dopamine is used for template‐free electrochemical polymerization to form biocompatible polypyrrole (PPy) nanofiber coatings on bone implants. Dopamine monomers are electropolymerized to PDA chains affixed to biomedical titanium after the nanomicelles are tuned to self‐assemble by triggering the potential, resulting in nanofiber formation. Dopamine serves as a dopant to induce the formation of conductive PPy nanofibers and as a promoter to accelerate biomineralization, cell proliferation, and adhesion.

  相似文献   


11.
The polyacrylonitrile/polymethyl‐methacrylate (PMMA/PAN) porous fibers, core–shell hollow fibers, and porous thin films are prepared by coaxial electrospinning, single electrospinning, and spin‐coating technologies, respectively. The different morphologies arising from different processes display great influences on their thermal and crystalline properties. The adding of PMMA causes porous structure due to the microphase‐separation structure of immiscible PMMA and PAN phases. The lower weight loss, higher degradation temperature, and glass‐transition temperatures of porous thin films than those of porous fibers and core–shell hollow fibers are obtained, evidencing that the polymer morphologies produced from the different process can efficiently influence their physical properties. The orthorhombic structure of PAN crystals are found in the PMMA/PAN porous thin films, but the rotational disorder PAN crystals due to intermolecular packing are observed in the PMMA/PAN porous fibers and core–shell hollow fibers, indicating that different processes cause different types of PAN crystals.

  相似文献   


12.
A pressurized melt gyration process has been used for the first time to generate poly(ε‐caprolactone) (PCL) fibers. Gyration speed, working pressure, and melt temperature are varied and these parameters influence the fiber diameter and the temperature enabled changing the surface morphology of the fibers. Two types of nonwoven PCL fiber constructs are prepared. First, Ag‐doped PCL is studied for antibacterial activity using Gram‐negative Escherichia coli and Pseudomonas aeruginosa microorganisms. The melt temperature used to make these constructs significantly influences antibacterial activity. Neat PCL nonwoven scaffolds are also prepared and their potential for application in muscular tissue engineering is studied with myoblast cells. Results show significant cell attachment, growth, and proliferation of cells on the scaffolds.

  相似文献   


13.
Preparation of novel nanocomposite hydrogels opens up new avenues to next generation of biocompatible materials to be used in bioengineering and drug delivery. Toward this goal, chitosan nanocomposite hydrogels using click chemistry inspired cross‐linking are prepared. To enable this, Diels–Alder reaction of furan‐containing chitosan and maleimide‐coated gold nanoparticles is employed. The viscoelastic properties of the obtained nanocomposites as well as the effect of the nanoparticles as cross‐linkers are studied, indicating that they play significant role in hydrogel formation and stability. Nanoparticle‐enriched hydrogels are also found to demonstrate pH‐sensitivity therefore showing their potential for future biosensing applications.

  相似文献   


14.
The fabrication of asymmetric polymer membranes via vapor phase deposition is demonstrated. In this solventless process, the dense layer is deposited first and then the porous layer is subsequently deposited onto the dense layer. A variety of functional polymer membranes can be produced by varying the precursor molecules. The functionality of the dense and porous layers can be independently tailored to be either hydrophobic or hydrophilic, resulting in membranes that are fully hydrophilic, fully hydrophobic, or asymmetric in both structure and chemical functionality. The thickness of both the porous and dense layers can be separately tuned by controlling the deposition time.

  相似文献   


15.
Acrylonitrile–butadiene–styrene (ABS) is a polymer composing of acrylonitrile, butadiene, and styrene. It has been widely used in industry because of its good mechanical and physical properties. The fabrication of ABS fibers, however, has been rarely studied. Here the fabrication of ABS fibers has been reported by an electrospinning technique, in which the sizes and morphologies of the fibers can be controlled by adjusting the electrospinning conditions. The morphologies of the ABS fibers can also be transformed by annealing the fibers on poly (methyl methacrylate) (PMMA) films. After annealing, the ABS fibers gradually transform to ABS particles embedded in the PMMA films by a mechanism similar to the Rayleigh‐instability‐type transformation. To extend the applications of the electrospun ABS fibers, electroless deposition of copper is also conducted, resulting in copper‐coated ABS fibers.

  相似文献   


16.
Graphene has resulted in significant research effort to generate polymer nanocomposites with improved mechanical, thermal as electrical properties as compared to pure polymers. A large number of studies have been undertaken using different graphene derivatives, filler loadings, synthesis methods, and so on to obtain optimum filler dispersion as well as filler–matrix interactions, which are crucial for achieving significant enhancement in the properties, especially at low filler fraction. This review summarizes the mechanical and thermal properties of numerous studies carried out for the property enhancements of commercially relevant thermosetting materials such as epoxy, polyurethane, natural rubber, melamine formaldehyde, phenol formaldehyde, silicones, vinyl ester, cyanate ester, and unsaturated polyester resin.

  相似文献   


17.
Recent advances in clinical practice drive deoxyribonucleic acid (DNA) as an important class of biomarker. Monitoring the change in their concentration suggests the initiation and/or progression of various disorders. However, low quantity of DNA biomarkers in body fluids requires a delicate isolation methodology that provides efficient separation and easy handling. This study describes a newer‐generation separation technology relying on electrospun fibers of sub‐micrometer diameter of a commodity polymer for DNA biomarkers in simulative serum. Fibrous polystyrene membranes are prepared by electrospinning and they are subjected to post‐modification with Au. The composite membranes may provide a convenient environment for the removal of bovine serum albumin (BSA) from BSA and DNA mixtures. The eluent can be used as an efficient tool for detection of DNA biomarkers associated with diagnosis of numerous life‐threatening diseases.

  相似文献   


18.
A gas‐permeable cellulose template for microimprint lithography has been synthesized and characterized for the reduction of template damage and gas trapping caused by solvents and oxygen generated from cross‐linked materials. The 5 μm line‐pattern failure of the microimprinted UV cross‐linked liquid materials with 4.7 wt% acetone as a volatile solvent is solved by using the gas‐permeable cellulose template because of its increased oxygen permeability. The gas‐permeable cellulose template also allows the use of volatile solvents with high coating property and solubility into the microimprinted materials instead of the compounds and plastic resins conventionally used in mold injection.

  相似文献   


19.
Additive manufacturing (AM) processes can provide great input for solving recently encountered challenges of the global market such as mass customization, highly dynamic environments, and the decrease of time needed from a draft to final products. This study aims at contributing to the issue of material limitations typically present in AM by researching possibilities of directly using technically relevant and commercially available polymer granules in melt extrusion processes. In order to extend the knowledge on the processing of semicrystalline polymers in melt extrusion based processes, different temperature induced influences on mechanical and morphological properties are investigated for poly(propylene). Mechanical tests are conducted to evaluate the effects and interdependencies of substrate, extrusion, and cooling temperature. Finally, based on the identified mechanical and rheological behavior of the material, a process window for the used materials is suggested.

  相似文献   


20.
The previously introduced process for enzyme‐mediated in situ synthesis and deposition of eumelanin is investigated with covalent immobilization of the tyrosinase. It results in a monolayer structure of non‐coalesced melanin particles, with a film thickness of 5–8 nm. The reaction is self‐terminating due to overlay of the enzymes with particles. The melanin particles are rodlike with lengths down to 6 nm. Isolated melanin structures of such small size have not been observed before and might be a kind of protoparticle in the supramolecular buildup of melanin oligomers. Utilization of melanin particles with such small size can enable nanotechnological applications in the areas of bioelectronics and biosensors.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号