首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用固相法制备了Cata4Ti4O15系微波介质陶瓷.研究了不同预烧温度对CaLa4Ti4O15陶瓷烧结特性和微波介电性能的影响.在1 200℃预烧caLa4Ti4O15粉末.除CaLa4Ti4O15主相外,还存在部分CaTiO3,La2Ti2O7和La2TiO5混合相.在1 300℃和1 400℃预烧后.获得了六方类钙钛矿CaLa4Ti4O15单相.CaLa4Ti4O15粉末预烧后可饶结成高致密陶瓷(相对密度约97%),同时具有高机械品质因数与谐振频率的乘积(Q×f)值和近零谐振频率温度系数(Tf).1 550℃烧结的CaLa4Ti4O15陶瓷具有优异的微波介电性能:相对介电常数εr=45.1,Q×f=46087GHz,tf=-14.1 × 10-6/℃(预烧温度1 200℃);εr=-45.9,Q×f=48871GHz,tf=-14.4 ×10-6/℃(预烧温度1 300℃).  相似文献   

2.
(1-x)Ba4Sm9.33Ti18O54-xCa0.61Nd0.26TiO3系微波介质陶瓷   总被引:1,自引:0,他引:1  
采用固相合成法制备了(1-x)Ba4Sm9.33Ti18O54-xCa0.61Nd0.26TiO3[(1-x)BST-xCNT]系微波介质陶瓷.探讨了组成、烧结温度对微波介质陶瓷结构、介电性能的影响.x<0.6时,(1-x)BST-xCNT陶瓷为正交结构的新型钨青铜单相.x≥0.6时,相继出现了第二相Sm2Ti2O7和钙钛矿相,最终形成钙钛矿单相.微波介质陶瓷的介电常数ε随x的增大持续升高,品质因子Qf值则先增大后迅速减小再急剧增大.1 325~1 350 ℃烧结样品的微波介电性能达到最佳:x=0时,ε=75,Qf=8985GHz,谐振频率温度系数τf=-8.2×10-6/℃;x=0.2时,ε=75,Qf=9 552GHz,τf=-14.4×10-6/℃;x=1时,ε=108.9,Qf=14919GHz,τf=236.2×10-6/℃.  相似文献   

3.
为降低Ba_4Sm_(9.33)Ti_(18)O_(54)(BST)微波介质陶瓷的烧结温度,研究了B_2O_3掺杂对其烧结性能、物相组成、显微结构及介电性能的影响。结果表明:少量B2O3的引入未改变陶瓷的晶相组成,主晶相为Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54)固溶体,适量B_2O_3不仅能显著地降低BST陶瓷的烧结温度至1180℃,而且能提高其介电性能;随着B_2O_3添加量的继续增加,有烧绿石结构的Sm_2Ti_2O_7相出现并逐渐增多。当B_2O_3添加量为0.25 wt%,在1180℃温度烧结3 h时,BST陶瓷获得优异的微波介电性能:ε_r=76.58,Q·f=6794.24 GHz,τ_f=-7.06×10~(-6)/℃。  相似文献   

4.
采用传统固相法制备了不同摩尔配比的(1-x)MgSn0.05Ti0.95O3-xSrTiO3微波介质复相陶瓷材料,研究了复相陶瓷的烧结特性、显微结构和微波介电性能.结果表明:MgSn0.05Ti0.95O3和SrTiO3两相共存,无固溶现象.随着SrTiO3含量的增多,(1-x) MgSn0.05Ti0.95O3-xSrTiO3的相对介电常数(εr)线性增大,品质因数(Q×f)下降,谐振频率温度系数(τf)从负值变为正值.通过调节x值,可以获得近零的τf值.陶瓷的τf变化符合Lichtenecker混合法则.0.98MgSn0.05Ti0.95O3-0.02SrTiO3复相陶瓷在1330℃烧结4h,获得最佳的微波介电性能:εr=19.32,Q×f=193.527 THz,τf=-2×10-6/℃.  相似文献   

5.
以分析纯的ZnO、ZrO_2、CuO及Nb_2O_5为原料,采用传统固相法制备了Zn_(1–x_Cu_xZrNb_2O_8(ZCZN,x=0.00–0.05)微波介质陶瓷,研究了不同CuO添加量对ZCZN陶瓷的烧结性能、显微结构、相组成以及微波介电性能的影响,利用X射线衍射仪、扫描电子显微镜和网络分析仪等对其微观结构、形貌以及微波介电性能进行表征。结果表明:CuO的添加能有效降低ZnZrNb_2O_8陶瓷的烧结温度,提高其品质因数和介电常数。当x=0.03时,陶瓷可在1 200℃烧结并获得最佳微波介电性能:介电常数ε_r=30.1,品质因数Q×f=53 037 GHz,频率温度系数τ_f=–57.21×10~(–6)/℃。  相似文献   

6.
以分析纯的ZnO、ZrO_2、CuO及Nb_2O_5为原料,采用传统固相法制备了Zn_(1–x_Cu_xZrNb_2O_8(ZCZN,x=0.00–0.05)微波介质陶瓷,研究了不同CuO添加量对ZCZN陶瓷的烧结性能、显微结构、相组成以及微波介电性能的影响,利用X射线衍射仪、扫描电子显微镜和网络分析仪等对其微观结构、形貌以及微波介电性能进行表征。结果表明:CuO的添加能有效降低ZnZrNb_2O_8陶瓷的烧结温度,提高其品质因数和介电常数。当x=0.03时,陶瓷可在1 200℃烧结并获得最佳微波介电性能:介电常数ε_r=30.1,品质因数Q×f=53 037 GHz,频率温度系数τ_f=–57.21×10^(–6)/℃。  相似文献   

7.
《硅酸盐学报》2021,49(9):1928-1934
采用传统固相反应法制备(Sr_(1-x)Zn_x)Al_2Si_2O_8(x=0,0.005,0.010,0.030,0.060)微波介电陶瓷,探讨不同Zn~(2+)取代量对SrAl_2Si_2O_8(SAS)陶瓷晶体结构和微波介电性能的影响。将第一性原理引入到锶长石系微波介电陶瓷分析方法中,以确定取代元素(Zn~(2+))可能占据的位置(Sr~(2+),Al~(3+))。结果表明:Zn~(2+)取代可促进SAS品质因数的提高(Q×f 37 502~48 252 GHz),同时也改善了 SAS陶瓷样品的密度和谐振频率温度系数(τ_f)。当x=0.010、烧结温度为1 500℃时,(Sr_(0.99)Zn_(0.01))Al_2Si_2O_8陶瓷获得最佳的介电性能:ε_r=7.0,Q×f=48252 GHz,τ_f=-36.35×10~(-6)/℃。  相似文献   

8.
通过传统固相合成工艺制备了(1-x)Nd(Zn_(1/2)Ti_(1/2)O_3-xSrTiO_3(x=0.0,0.2,0.4,0.5,0.6,0.8)(NZST)微波介质陶瓷。研究了SrTiO_3的添加量x对NZST陶瓷的烧结性能、晶相组成、显微结构以及微波介电性能的影响。结果表明:NZST陶瓷的体积密度随着x值增大而减小,并在1350℃可以烧结致密;XRD结果显示,在x取值的整个范围内,体系均形成两相复合系统;随着SrTiO_3的添加量x的增加,NZST陶瓷的微波介电性能呈现线性的变化规律。当x=0.5时,可获得谐振频率温度系数近零的微波介质陶瓷,其微波介电性能为:ε_r=52.5,Q×f=15834 GHz,τ_f=5.48×10~(-6)/℃。  相似文献   

9.
采用固相烧结工艺制备低损耗、非化学计量比Zn_(1.01)Nb_2O_6微波介电陶瓷。研究了添加不同量的Li_2CO_3–B_2O_3–V_2O_5(LBV)对Zn_(1.01)Nb_2O_6陶瓷烧结温度、表面形貌以及微波介电性能的影响。结果表明:LBV作为助烧剂,在陶瓷烧结过程中产生了液相,当添加剂含量大于1.5%(质量分数)时,LBV与基体陶瓷发生了化学反应。液相的产生、副相LiZnNbO_4的形成以及V~(5+)的扩散共同改善了陶瓷的烧结行为,使烧结温度由1 175℃低至950℃。LBV加入到基体陶瓷后对微波介电性能影响较小。当LBV添加量为1.0%,并在950℃保温4 h后,Zn_(1.01)Nb_2O_6陶瓷微波介电性能最优:ε_r=20.6,Q×f=90 472 GHz,τ_f=–85.9×10–6℃~(–1)。  相似文献   

10.
采用传统固相合成工艺制备(1–x)Zn0.8Mg0.2Zr Nb2O8-x TiO_2(ZMZNT,x=0.00,0.20,0.40,0.50,0.60,0.65,0.70,0.80)微波介质陶瓷,研究了TiO_2添加量对Zn0.8Mg0.2Zr Nb2O8陶瓷烧结行为、相结构、微观结构以及微波介电性能的影响。结果表明:随着TiO_2添加量增加,ZMZNT陶瓷的烧结温度逐步下降。当x=0~0.5时,形成了Zn0.8Mg0.2(Zr,Ti)Nb2O8固溶体;而当x=0.6~0.8时,陶瓷体系发生了复杂物相变化,微观形貌也呈现对应的变化规律。随着TiO_2添加量的增加,ZMZNT陶瓷相对介电常数εr逐渐增大,品质因数Q×f呈下降趋势,谐振频率温度系数τf呈上升趋势。当x=0.65时,0.35Zn0.8Mg0.2Zr Nb2O8-0.65 TiO_2陶瓷在1 170℃烧结4 h,可以获得较佳的微波介电性能:εr=36.7,Q×f=37 432 GHz,τf=7.12×10–6/℃。  相似文献   

11.
崔向红  耿振华 《硅酸盐通报》2017,36(11):3659-3663
通过传统固相法制备了α-CaSiO3/Al2O3-B2O3微波介质陶瓷,研究了不同B2 O3添加量对α-CaSiO3/Al2O3陶瓷烧结特性、相组成及微波介电性能的影响,通过XRD、SEM和网络分析仪对其相结构、微观形貌和微波介电性能进行了表征.结果表明:B2 O3的添加使陶瓷的烧结温度从1375℃降低到了1100℃,并使主晶相由α-CaSiO3相变为β-CaSiO3相;当B2 O3的添加量为3wt%时,在1100℃烧结2 h可获得最佳微波介电性能:εr=6.21,Q×f=30471 GHz,τf=-34.58 ppm/℃.  相似文献   

12.
采用传统固相法制备(Ca0.2Sr0.05Li0.375Sm0.375)TiO3钙钛矿微波介质陶瓷,研究了Bi4B2O9对(Ca0.2Sr0.05Li0.375Sm0.375)TiO3陶瓷微波介电性能的影响,利用X射线衍射仪、扫瞄电子显微镜和矢量网络分析仪对其晶体结构、显微组织和微波介电性能进行了研究。结果表明:掺10%Bi4B2O9的(Ca0.2Sr0.05Li0.375Sm0.375)TiO3陶瓷,其烧结温度由1 300℃降至1 080℃。当添加3.5%Bi4B2O9时,其最佳烧结温度为1 150℃,陶瓷的微波介电性能最佳(相对介电常数εr=116.9;品质因数Q×f=3 500GHz;频率温度系数τf=1.2×10-6/℃)。  相似文献   

13.
采用传统固相法制备(Ca0.2Sr0.05Li0.375Sm0.375)TiO3钙钛矿微波介质陶瓷,研究了Bi4B2O9对(Ca0.2Sr0.05Li0.375Sm0.375)TiO3陶瓷微波介电性能的影响,利用X射线衍射仪、扫瞄电子显微镜和矢量网络分析仪对其晶体结构、显微组织和微波介电性能进行了研究。结果表明:掺10%Bi4B2O9的(Ca0.2Sr0.05Li0.375Sm0.375)TiO3陶瓷,其烧结温度由1 300℃降至1 080℃。当添加3.5%Bi4B2O9时,其最佳烧结温度为1 150℃,陶瓷的微波介电性能最佳(相对介电常数εr=116.9;品质因数Q×f=3 500GHz;频率温度系数τf=1.2×10-6/℃)。  相似文献   

14.
用传统固相法制备了Ba2Ti9O20微波陶瓷,研究了Ba2Ti9O20微波陶瓷的组成对介电性能的影响,通过XRD和HP8714ET网络分析仪对其晶体结构和微波介电性能进行了研究,实验结果表明:少量掺MnCO3和ZrO2的Ba2Ti9O20陶瓷材料可把烧结温度降低到1260℃,微波介电性能较好;当ZrO2的加入量为0.1wt%且MnCO3加入量为0.15wt%时,其介电性能最佳的致密化烧结温度为1280℃,可以得到:ε=37;tanδ=3×10-4;τc=-28×10-6/℃。用Ba2Ti9O20陶瓷制成的贴片式介质滤波器测试,其电性能满足设计要求。  相似文献   

15.
以Zn(NO_3)_2溶液和Nb_2O_5凝胶为原料,NH_3·H_2O为沉淀剂,采用共沉淀法制备了ZnNb_2O_6超细粉体。用XRD、TEM、SEM等对所制备的超细粉体进行了表征,并重点研究了不同反应溶液浓度对超细ZnNb_2O_6粉体结构和性能的影响。结果表明,本方法所制备的正交相ZnNb_2O_6粉体,其晶粒尺寸可控制在100~300 nm之间;随反应溶液浓度的提高,所合成粉体的晶型没有太大的变化,均为正交相,空间群Pnca[60],但是晶体结构的完整性略有不同;随着反应溶液浓度的增加,所合成粉体的晶粒尺寸先减少后增大,团聚现象加重;不同反应溶液浓度制备的粉体,所对应的ZnNb_2O_6陶瓷的致密度有所不同。当反应溶液浓度为0.5 mol/L时,烧结温度为1200℃下制备的陶瓷,晶体生长均匀,致密性可达到96.4%。,最佳微波介电性能为介电常数ε_r=24.4,谐振频率温度系数τ_f=-40×10~(-6)/℃,品质因数Q×f=78880 GHz。  相似文献   

16.
(Mg1-xCox)TiO3基微波陶瓷介电性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以MgO,Co2O3和TiO2为原料,用固相反应法制备了(Mg1-xCox)TiO3(MCT)系陶瓷.研究了CoTiO3含量对其微观结构和微波介电性能的影响.结果表明:添加适量的CoTiO3,可以适当降低烧结温度,调整烧结温度范围.当掺入量为10 mol%,烧结温度为1350 ℃时,MCT陶瓷具有优良微波介电性能:εr=18.99;Q×f=154000 GHz,τf=-45 ppm/℃.  相似文献   

17.
采用传统固相反应法制备Zn_(1–x)Ca_xTi_(0.6)Zr_(0.4)Nb_2O_8(x=0.05,0.10,0.20,0.30)微波介质陶瓷,研究了不同Ca~(2+)取代量对Zn_(1–x)Ca_xTi_(0.6)Zr_(0.4)Nb_2O_8陶瓷的物相组成、显微结构及微波介电性能的影响,利用X射线衍射仪、扫描电子显微镜和网络分析仪等对其晶体结构、微观形貌及微波介电性能进行表征。结果表明:Ca~(2+)取代Zn~(2+)会导致Ca Nb_2O_6第二相的形成,且随Ca~(2+)含量的增加,ZnTiNb_2O_8相含量减少;Ca Nb_2O_6相的含量增加,导致Zn_(1–x)Ca_xTi_(0.6)Zr_(0.4)Nb_2O_8陶瓷的介电常数和品质因数减小,谐振频率温度系数向正方向移动。当x=0.3时,Zn_(1-x)Ca_xTi_(0.6)Zr_(0.4)Nb_2O_8陶瓷在1 140℃烧结并获得最佳微波介电性能:ε_r=30.42,Q×f=47 280 GHz,τ——f=–25.37×10~(–6)/℃。  相似文献   

18.
采用固相反应工艺,按化学计量比在BaO-Al2 O3-SiO2(BAS)基料中添加不同质量分数x(CaO-B2 O3-SiO2,CBS)(x=0,1%,2%,3%,4%)玻璃相合成BAS陶瓷.研究不同含量的CBS玻璃相对BAS系微波介质陶瓷的结构和介电性能的影响.结果表明:CBS玻璃相能够有效促进六方相钡长石向单斜相钡长石的转变,在x=1%时,BAS六方相完全转变为单斜相,同时BAS陶瓷的烧结温度从1400℃降低至1325℃.添加适量的CBS玻璃相后,BAS陶瓷样品密度、品质因数(Q×f)值以及谐振频率温度系数(τf)得到改善.当x=1%,烧结温度为1325℃时,可获得综合性能相对较好的BAS陶瓷,其介电性能:εr=6.43,Q×f=30846 GHz,τf=-19.01×10-6℃-1.  相似文献   

19.
采用传统固相合成法制备了xCa0.6La0.8/3TiO3-(1-x)(Li0.5Sm0.5)TiO3(CLT-LST)系列微波介质陶瓷材料,研究了该系列微波介质陶瓷的物相结构、表面形貌、介电性能。实验发现:随着Ca0.6La0.8/3TiO3含量的增多,CLT-LST样品XRD峰轻微左移。陶瓷组成对微波介电性能影响显著,复合体系CLT-LST的微波介电性能随着x值不同而连续变化:当x从0.2上升到0.6时,介电常数(εr)逐步增大,在x=(0.4~0.6),εr变化趋于稳定,达到较佳值;品质因数(Q·f)则先减小后增大再迅速减小;谐振频率温度系数(τf)逐渐从负值向正值方向移动。当复合体系组成为0.4Ca0.6La0.8/3TiO3-0.6(Li0.5Sm0.5)TiO3时,在1 250℃烧结4h所得到的微波介电性能较佳,εr=125;Q·f=2 680GHz;τf=7.0×106/℃。  相似文献   

20.
采用传统固相反应法制备(1-x)Mg3(VO4)2-xBiNbO4复合微波介质陶瓷材料,研究陶瓷的烧结特性、微观结构和微波介电性能。结果表明:当x从0.2增加到0.6,在最佳烧结温度制备的Mg3(VO4)2-BiNbO4陶瓷的机械品质因数与频率的乘积(Q×f)随x增大而减小,相对介电常数(εr)随x增大而增大,谐振频率温度系数(τf)随x增大从正变为负;通过调节x值,在x=0.2处获得近零的τf。Mg3(VO4)2与BiNbO4的复合可实现低温烧结;当x=0.2、850℃的低温致密成瓷获得了优良的微波介电性能:εr=14.76,Q×f=27930GHz(f0=8.29GHz),τf=3.65×10-6/℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号