首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解决谷氨酸发酵培养基中色素、杂质多所引起的发酵过程稳定性差、产酸低等问题,该研究采用生物氮素对发酵培养基中的主要氮源(玉米浆和豆粕水解液)进行替代,并通过单因素试验和正交试验对清洁发酵培养基中的关键因素生物氮素、生物素、VB1和甲硫氨酸的添加量进行优化,进而获得谷氨酸清洁发酵培养基,进行谷氨酸的清洁发酵工艺研究。结果表明,清洁发酵培养基中关键成分的最佳添加量为生物氮素2.0 g/L、生物素7 μg/L、VB1 10 mg/L、甲硫氨酸0.6 g/L。在最优工艺条件下,清洁发酵菌液OD600 nm值为84.2,谷氨酸产量为171 g/L,糖酸转化率为68.5%,分别较对照提高16.14%、12.50%、4.74%,发酵上清液透光率由0.9%提高至31%,说明清洁发酵培养基能够较好地提升谷氨酸发酵性能。  相似文献   

2.
谷氨酸菌体蛋白来自温敏型谷氨酸发酵生产废渣,经水解后替代适量豆粕水解液用于温敏型谷氨酸发酵培养基中。通过进行发酵工艺优化,实验结果表明在温敏型谷氨酸发酵培养基中添加一定量的谷氨酸菌体蛋白水解液,发酵的产酸和转化率有显著的提高。经过工艺优化,温敏型谷氨酸发酵培养基组成确定为:淀粉水解糖55g/L,玉米浆20mL/L,谷氨酸菌体蛋白水解液10g/L,豆粕水解液10g/L,糖蜜15g/L,Na2HPO47g/L,KCl 4g/L,MgSO4·7H2O 1.5g/L,MnSO4·7H2O 30mg/L,FeSO4·7H2O 30mg/L,维生素B1350μg/L,维生素H 500μg/L,消泡剂0.1mL/L。在此培养条件下,谷氨酸的产酸率达18g/L,转化率达65%,温敏型谷氨酸发酵综合水平有所提高。  相似文献   

3.
通过Plackett-Burman试验,得出糖蜜、玉米浆和豆饼水解液对谷氨酸产量有显著影响,通过最陡爬坡试验和响应面分析法对发酵培养基组成进行优化,得到谷氨酸棒杆菌(Corynebacterium glutamicum)最适发酵培养基组成为葡萄糖30g/L,玉米浆33.9g/L,豆饼水解液19.9g/L,糖蜜30.6g/L,MnSO40.03g/L,FeSO40.03g/L,MgSO42g/L,K2HPO44.5g/L,生物素(VH)0.3mg/L,硫胺素(VB1)0.3mg/L。通过对模型验证实验,谷氨酸产量实际值为111.33g/L,且较未优化的发酵培养基相比谷氨酸产量提高了22.75%。  相似文献   

4.
在5L发酵罐中利用优化培养基进行了谷氨酸棒杆菌连续培养生产L-赖氨酸的研究。相同发酵条件下,优化培养基和原始培养基中的菌种生物量分别达到8.0g/L和9.3g/L,最快生长速率分别为0.53g/L/h和0.72g/L/h。发酵48h后,优化培养基中的L-赖氨酸浓度、产酸总量和糖酸转化率分别为20.8g/100mL、588.2g和0.713g酸/g糖,和原始培养基相比分别提高了6.1%、2.3%和12.2%。优化培养基显著降低了L-赖氨酸生产的原料消耗,提高了生产效率。   相似文献   

5.
利用从纳豆中筛选得到的一株纳豆芽孢杆菌发酵生产γ-聚谷氨酸(γ-PGA)。在单因素优化实验的基础上,通过响应面法对发酵培养基进行优化,得到最佳培养基配方为蔗糖43.92 g/L、大豆蛋白胨7.00 g/L、谷氨酸钠46.32 g/L,γ-PGA产量由原来的7.253 g/L提高到11.794 g/L。  相似文献   

6.
周景文  徐建  陈守文  喻子牛 《食品科学》2006,27(10):288-292
为了提高聚-γ-谷氨酸(PGA)的产量,采用正交设计方案对发酵培养基组分中谷氨酸、葡萄糖、柠檬酸、甘油的配比进行试验设计,运用径向基神经网络建立PGA产量与培养基组分浓度之间的预测模型,采用遗传算法对此模型进行全局寻优,得到四种主要组份的最佳配比:谷氨酸21.2g/L、葡萄糖75.4g/L、柠檬酸7.2g/L、甘油10.8g/L,PGA产量达到12.8g/L,采用上述方法优化后的培养基使PGA的产量原始培养基提高了39.1%.  相似文献   

7.
从农家自酿葡萄酒中筛选出一株富含谷氨酸酿酒酵母菌(Saccharomyces cerevisiae)F-5,其26S rDNA核苷酸序列与S. cerevisiae TY12的26S rDNA核苷酸序列同源性为100%。以胞内谷氨酸含量为目标,采用响应面法对其发酵培养基进行了优化,建立糖蜜、工业蛋白胨和KH2PO4的二次回归模型,确定培养基最佳配方为:糖蜜(含30%蔗糖)100 mL/L、酵母浸粉10 g/L、工业蛋白胨20 g/L、MgSO4·7H2O 1 g/L、KH2PO4 0.5 g/L、FeSO4·7H2O 2 g/L。在此优化培养基中发酵培养24 h,胞内游离谷氨酸达到了3.29%,比优化前提高了87.8%。  相似文献   

8.
细菌纤维素/γ-聚谷氨酸复合膜发酵条件的优化   总被引:1,自引:0,他引:1  
在发酵培养基中添加γ-聚谷氨酸(γ-PGA),可以制备具有更优性能的细菌纤维素(BC)复合膜.采用响应面分析法优化细菌纤维素/γ-聚谷氨酸复合膜发酵生产工艺,首先通过Plackctt-Burman试验设计对影响复合膜发酵生产的8个因素进行筛选,得到3个关键影响因子:聚谷氨酸添加浓度,pH和γ-聚谷氨酸的添加时间;然后用最陡爬坡试验逼近响应值的最大区域;最后通过Box-Behnken设计及响应曲面分析确定了各考察因子的最佳取值:葡萄糖25g/L,柠檬酸6g/L,Na2HPO42g/L,γ-聚谷氨酸1.04g/L,γ-聚谷氨酸的添加时间4h,发酵初始pH5.0,温度30℃,发酵周期7d.在优化条件下复合膜的湿重达到61.07g/100mL培养基试验值与预测值误差为-3.05%,较初始培养基复合膜产量提高9 1.32%.  相似文献   

9.
聚γ-谷氨酸高产突变株的选育及摇瓶发酵条件   总被引:1,自引:0,他引:1       下载免费PDF全文
对地衣芽孢杆菌(Bacilluslicheniformis)进行亚硝基胍和60Co诱变,获得一株γ PGA的高产菌株C9.γ PGA质量浓度由9.44g/L提高到19.76g/L,提高了109%.突变株传代10次,质量浓度保持基本稳定.通过正交试验和单因素试验对发酵培养基及发酵条件进行了优化.当发酵培养基中含柠檬酸12g/L、甘油80g/L、L 谷氨酸23g/L、氯化铵7g/L,pH7.0,装液量为50mL/250mL三角瓶,接种体积分数为5%时,37℃摇瓶发酵72h,γ PGA达到23.32g/L.  相似文献   

10.
为提高赖氨酸发酵的产酸浓度、糖酸转化率等发酵指标,通过Plackett-Burman实验设计筛选出培养基中对赖氨酸发酵影响最大的成分为蛋氨酸、糖蜜和谷氨酸,再通过响应面设计实验对这3种成分进行优化,得到最适含量为蛋氨酸0.195g/L,糖蜜15.70mL/L,谷氨酸0.215g/L,赖氨酸浓度从1.90g/100mL提高至2.25g/100mL。发酵培养基中加入10g/L的(NH4)2SO4作为改进氮源,赖氨酸浓度可进一步提高至2.41g/100mL,发酵周期由30h缩短至25h。通过优化培养基和改进氮源,可以显著降低赖氨酸的生产成本,提高产品收益。  相似文献   

11.
二次接种叠加生物素的谷氨酸发酵工艺研究   总被引:2,自引:0,他引:2  
由于受到发酵罐溶氧条件的限制,在高浓度生物素的谷氨酸发酵中往往出现产酸与糖酸转化率不协调的现象,针对这一现象,研究了二次接种叠加生物素的谷氨酸发酵工艺。在试验所用的发酵罐中,采用8.0μg/L生物素浓度的培养基作为发酵基础培养,经过一段时间发酵后,接入第二次种子液以及3.0μg/L(发酵液初始体积)的生物素量,通过适当的发酵控制,产酸水平达到139.6g/L,糖酸转化率高达62.80%,单罐谷氨酸产量比一次接种添加8.0μg/L生物素的发酵工艺提高了15.78%。  相似文献   

12.
优化米曲霉-红曲霉复合菌固态发酵猪骨素产谷氨酸的发酵条件以提高谷氨酸产量。通过单因素实验和正交实验,以谷氨酸产量为指标,研究发酵时间、发酵温度、培养基初始p H和培养基含水量对谷氨酸产量的影响并对其进行优化。结果表明,培养基初始p H为6,培养基含水量为30%,发酵温度32℃,发酵5 d谷氨酸产量达到194.2 g/kg,总氨基酸产量达到768.5 g/kg,比优化前分别提高了15.7%和5.5%。   相似文献   

13.
γ-聚谷氨酸是一种由生物所合成的氨基酸聚合物,具有极强的水溶性,生物相容性,能被广泛的运用到食品、医药、日化、环保、农业等行诸多领域,具有巨大的市场前景。本实验以实验室保藏的一株产γ-聚谷氨酸(γ-PGA)地衣芽孢杆菌Bacillus licheniformis QY-27为出发菌株,通过常压室温等离子体(ARTP)诱变,筛选获得一株遗传性能稳定的高产γ-聚谷氨酸突变菌株Bacillus licheniformis QS-21,该突变菌株γ-聚谷氨酸的产量较出发菌株的9.12g/L,提高了42.26%,达到15.89g/L。对筛选获得的变异株发酵条件优化结果显示,L-谷氨酸20g/L,甘油100g/L,Mg SO4·7H2O0.5g/L为变异株合适发酵培养基,在37℃,摇瓶转数230r/min,发酵培养72h,γ-聚谷氨酸的产量达22.56g/L,比优化前提高了29.56%。  相似文献   

14.
该研究以谷氨酸棒杆菌(Corynebacterium glutamicum)P169为研究对象,以谷氨酸产量为主要评价指标,采用单因素试验和响应面法对其发酵条件进行优化,并进行摇瓶和20 L罐分批补料发酵验证。结果表明,谷氨酸棒杆菌P169产谷氨酸的最佳发酵条件为酵母粉41.0 g/L、葡萄糖27.0 g/L、尿素12.0 g/L和pH 7.0。在此优化条件下,谷氨酸产量达25.1 g/L,比优化前(16.5 g/L)提高了52.1%。以此为基料进行20 L罐分批补料发酵,谷氨酸产量达155 g/L,比优化前(142 g/L)提高了9.2%。该研究为提高谷氨酸棒杆菌谷氨酸产量提供了一种技术解决方案。  相似文献   

15.
碳氮源对Bacillus sp.B_(53)发酵产聚谷氨酸的影响   总被引:1,自引:0,他引:1  
考察了 8种不同碳源和 7种不同氮源对Bacillussp B53 发酵产聚谷氨酸的影响。结果表明 ,柠檬酸、甘油和硫酸铵是合成聚γ 谷氨酸比较适宜的碳源和氮源 ,前体物质L 谷氨酸的存在是聚谷氨酸高产所必需的。经过正交试验和回归分析 ,确定最佳碳氮源配比为 :L Glu 2 0 g/L ,CTA 9 86 4g/L ,Glycerol 80 36 g/L ,(NH4) 2 SO47g/L ,其他培养基成分有MgSO4·7H2 O 0 5 g/L ,FeCl3 ·6H2 O 0 0 2 g/L ,K2 HPO41g/L ,CaCl2 ·2H2 O0 2 g/L ,MnSO4·H2 O 0 0 5 g/L。在既定发酵条件下 ,Bacillussp B53 在优化培养基上产生γ PGA 19 12 g/L比基础发酵培养上的 8 87g/L提高了 115 5 6 %。  相似文献   

16.
响应面法优化枯草芽孢杆菌产γ-聚谷氨酸发酵工艺   总被引:1,自引:0,他引:1  
以1 株谷氨酸依赖型γ-聚谷氨酸(poly-γ-glutamic acid,γ-PGA)产生菌Bacillus subtilis GXA-28为研究对象,利用响应面法系统优化其γ-聚谷氨酸发酵培养基成分。通过单因素试验、Plackett-Burman试验、最陡爬坡试验以及Box-Behnken试验构建响应方程,利用该方程预测得到最优培养基:蔗糖33.65 g/L、酵母膏0.4 g/L、NH4Cl 1.6 g/L、谷氨酸钠15 g/L、 KH2PO4 0.4 g/L、K2HPO4·3H2O 1.68 g/L、MgSO4·7 H2O 0.1 g/L、MnSO4·H2O 0.04 g/L。利用优化培养基,在40.2 ℃、160 r/min条件下摇瓶发酵22 h,γ-PGA产量达到16.63 g/L,底物谷氨酸钠转化率比优化前提高了20%,达到100%。  相似文献   

17.
降低谷氨酸的积累可提高L-色氨酸产量及糖酸转化率。敲除Escherichia coli TRTH中的谷氨酸脱氢酶及谷氨酸合成酶编码基因gdh A、glt B,构建TRTHA(TRTH,Δgdh A)、TRTHB(TRTH,Δglt B),考察gdh A、glt B缺失对L-色氨酸发酵的影响。结果表明,gdh A及glt B缺失能有效降低谷氨酸的积累,但会降低细胞生长及色氨酸合成;培养基中谷氨酸的添加可恢复TRTHA及TRTHB的生长及色氨酸合成能力。在含1 g/L谷氨酸培养基中,利用TRTHB发酵L-色氨酸,L-色氨酸产量(41.23 g/L)及糖酸转化率(15.45%)最高,较TRTH分别提高了10.92%和7.89%;谷氨酸生成量(5.72 g/L)及乙酸积累量(1.73 g/L)分别较TRTH降低了25.23%及提高了10.19%。TRTH和TRTHB代谢流分析结果表明,glt B缺失会降低谷氨酸合成代谢流并提高乙酸合成代谢流;TRTHB的色氨酸合成代谢流(11.4%)较TRTH提高了40.74%。  相似文献   

18.
谷氨酸全营养流加发酵新工艺   总被引:1,自引:0,他引:1  
全营养流加主要是选择适当的全营养培养,在合适的时间进行营养的补加,通过补加的营养来弥补菌体因生长代谢而消耗的营养物质,同时也可以降低发酵培养基的浓度,避免富营养对于菌体活力的抑制。因此,采用全营养流加策略能够解决L-谷氨酸发酵后期菌体活力不足和产酸能力下降等问题。实验结果表明,最佳流加条件为从发酵2 h开始流加,持续24 h流加体积分数为60%的流加培养基。在此条件进行L-谷氨酸发酵,生物量(OD 600)达到了66,提升了29.4%,菌体转型时间提前了2 h,L-谷氨酸产量为168 g/L,提高了22.6%,乳酸含量为3.1 g/L,降低了13.8%,丙氨酸含量为2.06 g/L,降低了17.6%,糖酸转化率为63%,提高了1.5%。全营养流加发酵对于加快菌体转型,提高菌体活力、谷氨酸产量及糖酸转化率均有积极作用。  相似文献   

19.
γ-聚谷氨酸(γ-polyglutamic acid,γ-PGA)是一种应用于食品、农业、医药等领域的生物聚合物。在不补料发酵γ-PGA过程中,存在因培养基中碳源、氮源不足导致菌体生长发育和γ-PGA合成受限的情况。为实现γ-PGA高产,采用分批补料发酵方式补充菌体生长代谢所需的碳源和氮源,在5 L发酵罐中进行γ-PGA分批补料发酵优化,并在200 L发酵罐进行放大验证。结果表明:当培养基中葡萄糖含量低于5 g/L、氨氮浓度低于0.5 g/L时开始流加补料,持续补料12 h将培养基中葡萄糖浓度维持在5 g/L~15 g/L,氨氮浓度维持在0.5 g/L~1.0 g/L。与不补料发酵相比,这一优化使得菌种指数生长期延长了6 h,生物量(OD660)达到了0.62,提升了39.01%,谷氨酸含量降至16 g/L,谷氨酸利用率提升了38.47%,γ-PGA生产强度和产量分别为15.69 g/(L·d)、(47.09±0.82)g/L,均提高了38.45%,为γ-PGA工业化生产提供了技术支撑。  相似文献   

20.
研究了各种氨基酸对枯草芽孢杆菌发酵生产聚谷氨酸的影响。在发酵初始添加3 g/L天冬氨酸、1.5 g/L苯丙氨酸和在对数生长期晚期添加7 g/L谷氨酸使聚谷氨酸产量分别提高12.6%,23.7%和31.7%。再用均匀设计法进一步优化。优化后的氨基酸添加量为:8 g/L谷氨酸、3.5 g/L天冬氨酸、1 g/L苯丙氨酸,γ-PGA产量达到37.92 g/L,与优化前得到的培养结果相比,提高了9.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号