首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
提出了包含三步式排泡过程的预烧结工艺以及双凹凼-凸台的微复合键合结构方案,以便有效控制玻璃浆料层中的孔洞生成并精确控制键合间隙。预烧结工艺涉及的三步式排泡包含玻璃液形成、真空排泡与孔洞流平3个过程,该过程有效地排除了气泡,从而抑制了键合中间层中的孔洞形成,其工艺的重复性和鲁棒性很强。微复合键合结构中的内外凹凼用于有效控制多余的熔融的玻璃浆料的流动路径,避免其对封装结构的污染;微阻挡凸台则可以精确地将玻璃浆料层的厚度即键合间隙控制到凸台高度。对键合性能的测试表明,该方案简单有效,键合强度和气密性良好,键合间隙为10.1μm,键合强度为19.07 MPa,键合漏率小于5×10-9 Pa·m3/s。  相似文献   

2.
在使用玻璃浆料对MEMS器件进行封装的过程中,中间层即玻璃浆料薄层的厚度、宽度等参数会对封装强度和气密性等产生至关重要的影响。为了有效控制玻璃浆料层的宽度、厚度,文中首次研究了利用微接触转印方法进行玻璃浆料薄膜的制备。在对微接触转印工艺流程和微接触转印装置的优化设计之后,采用了不同厚度的凸模进行了玻璃浆料的微接触转印实验。实验结果表明:通过微接触转印可以制得表面光滑边缘整齐的玻璃浆料薄膜,其宽度随着凸模厚度的减小而减小,厚度基本保持不变;在凸模厚度为70μm时,获得了玻璃浆料薄膜的宽度和厚度分别为200μm和52μm,可控性较高。  相似文献   

3.
采用双埋层SOI( Silicon-On- Insulator)材料,结合KOH腐蚀工艺、电感耦合等离子体(ICP)刻蚀工艺、阳极键合以及喷雾式涂胶工艺,研制了一种基于平面矩形螺旋梁的低g值微惯性开关.利用二氧化硅KOH腐蚀/ICP刻蚀自停止的特点,平面矩形螺旋梁厚度的精度为±0.46 μm.分析了双埋层SO1材料的电学特性,采用等电位技术,实现了双埋层SOI与上下两层硼硅玻璃的阳极键合.采用玻璃无掩模湿法腐蚀技术,在玻璃封盖底部设计制作了大小为200 μm×200μm的防粘连凸台,解决了芯片在清洗干燥过程中的粘连问题.采用ICP刻蚀用硅衬片方法,解决了ICP刻蚀工艺中高温导致的金硅共晶合金问题.实验验证显示,提出的方法效果较好,芯片成品率得到较大提高,为大批量地研制低g值微惯性开关提供了可靠的工艺基础.  相似文献   

4.
压电PZT薄膜具有横向压电系数大,与MEMS工艺兼容性高等优点,在制作以压电PZT薄膜为核心的MEMS器件,如压电应力光开关时,需要将电极宽度缩小至10μm,甚至5μm,但长度仍需保持在8000μm,电极长宽比达1600:1.针对目前MEMS器件应用需求,提出使用双层光刻胶剥离法来实现超细电极的制备,使用溶胶凝胶法制备压电PZT薄膜作为电极沉积衬底,研究了电极剥离的工艺流程并对电极进行性能测试.结果表明,双层光刻胶剥离法可以在溶胶凝胶法制备的压电PZT薄膜上制备长8000μm、宽5μm的电极,电极剥离完全,图形完整,可以实现双端导通.  相似文献   

5.
压电PZT薄膜具有横向压电系数大,与MEMS工艺兼容性高等优点,在制作以压电PZT薄膜为核心的MEMS器件,如压电应力光开关时,需要将电极宽度缩小至10μm,甚至5μm,但长度仍需保持在8000μm,电极长宽比达1600:1.针对目前MEMS器件应用需求,提出使用双层光刻胶剥离法来实现超细电极的制备,使用溶胶凝胶法制备压电PZT薄膜作为电极沉积衬底,研究了电极剥离的工艺流程并对电极进行性能测试.结果表明,双层光刻胶剥离法可以在溶胶凝胶法制备的压电PZT薄膜上制备长8000μm、宽5μm的电极,电极剥离完全,图形完整,可以实现双端导通.  相似文献   

6.
压电PZT薄膜具有横向压电系数大,与MEMS工艺兼容性高等优点,在制作以压电PZT薄膜为核心的MEMS器件,如压电应力光开关时,需要将电极宽度缩小至10μm,甚至5μm,但长度仍需保持在8000μm,电极长宽比达1600:1.针对目前MEMS器件应用需求,提出使用双层光刻胶剥离法来实现超细电极的制备,使用溶胶凝胶法制备压电PZT薄膜作为电极沉积衬底,研究了电极剥离的工艺流程并对电极进行性能测试.结果表明,双层光刻胶剥离法可以在溶胶凝胶法制备的压电PZT薄膜上制备长8000μm、宽5μm的电极,电极剥离完全,图形完整,可以实现双端导通.  相似文献   

7.
在分析已经商业化的压阻式、电容式、谐振式三类典型的硅微压力传感器各自优缺点和回顾它们微压化进展的基础上,确定了硅微超微压传感器(0~100Pa)的初步结构形式-电容式.针对设计过程中存在的主要难点:超薄平整感压薄膜的制备、高真空压力参考腔的获得与维持、高真空压力参考腔的电极引线以及微弱电容信号的提取,完成了两种差动结构方案的结构与工艺设计,对二者工艺和抗过载能力等方面进行了比较,为下一步的投片工作打下了基础.  相似文献   

8.
为了解决MEMS工艺制备金属微电极阵列时,电极与基底结合力小,易脱落等问题,提出了基于Over-plating成型的过电铸法金属微电极阵列制备技术。在常温下,选择190 g/m L的CuSO_4·5H_2O、60 g/L的H_2SO_4、70 mg/L的氯离子以及适量的添加剂配置成的电铸液,并采用酸性镀铜工艺,设置电流密度1.5 A/dm~2,过电铸20 h,经抛光处理后,分别得到了高度200μm、900μm,线宽200μm,中心距300μm的柱金属微电极阵列。所制备的金属微电极阵列,在相邻区域金属沉积过程中相互影响形成了较深的孔缝,这些微孔极大地增加了三维微电极的表面积。可见,过电铸工艺是一种便捷、快速、低成本的微电极制备工艺。  相似文献   

9.
通过制备面向MEMS红外光源的高辐射率多晶硅纳米柱状结构和单晶硅纳米孔结构,以提升红外源表面辐射率,降低器件功耗。制备方法分别为反应离子刻蚀(reactive-ion-etching,RIE)及等离子浸没离子注入(plasma immerse ion implantation,PIII)工艺对单晶硅以及铝电极掩膜的多晶硅表面调控修饰制备。并对2种纳米硅结构进行了吸收率测试,对铝电极掩膜进行了引线键合破坏拉力测试。测试表明,纳米硅结构在3~5μm波段的辐射率可以达到85%以上,暴露在刻蚀气氛后的铝电极掩膜引线键合强度可以达到器件工艺要求。  相似文献   

10.
丝网印刷法制备PZT厚膜工艺与MEMS技术兼容.通过调整PZT印刷浆料粘度,并采取多次套印、多次退火及合理的烧结工艺,在硅膜片上获得了较致密的PZT厚膜.采用悬臂梁方法对制备的Ag/PZT/SiO2/n+Si结构复合压电厚膜进行了直接测试,结果表明PZT压电厚膜的压电常数d31可达70×10-12m/V,以此方法制备的压电厚膜适合作为MEMS执行器的微驱动元件.  相似文献   

11.
为了缩短检测液压油污染物的相对时间、提升对固体污染物的检测精度。设计了一种内置玻璃管的高通量环形流道检测传感器,玻璃管内置一对硅钢片,聚合检测区磁场用以提升检测精度。流道穿过双层平面线圈内孔,通过改变平面线圈电路的连接方式,传感器可以切换两种不同的工作模式:电感检测和电容检测。电感检测可以区分铁磁性和非铁磁性固体颗粒,电容检测可以区分水滴和气泡。分别对电感检测和电容检测进行理论分析和实验验证,并且对有无硅钢片的电感检测进行仿真和实验对比。实验结果表明,环形流道设计缩短了检测时间,硅钢片的聚磁场效果可以提升对固体污染物的检测精度,铁磁性(铁颗粒)检测下限40μm,非铁磁性(铜颗粒)检测下限130μm,电容检测时,检测到200μm水滴和270μm气泡。该研究为实验液压油污染物快速区分检测提出了一种新方法。  相似文献   

12.
超白玻璃是一种超透明低铁玻璃,因其具有优越的物理、光学性能,而广泛应用于精密电子、高档汽车及太阳能光伏发电领域。由于其本身的硬脆特性,玻璃微孔的出口极易破损,为提高玻璃微孔的加工定域性,降低微孔出口破损的可能性,对微细电化学放电钻削加工工艺进行了研究与优化。首先,根据电化学放电原理,探讨了气膜的形成和材料去除机理,分析了放电能量对玻璃微孔加工工艺的影响,建立了单位时间电化学放电加工能量控制模型;其次,试验分析了电压幅值、占空比、脉冲频率、进给速度等主要参数对微孔入口直径和出口质量的影响;最后,通过优化后的加工参数在厚度为300μm的超白玻璃试件上,成功加工得到入口直径为172μm、出口直径为167μm的3×3微孔阵列结构,出口无破损现象。实验结果表明,基于脉冲能量控制的微细电化学放电钻削工艺在玻璃微孔加工方面很有潜力。  相似文献   

13.
为了消除RB-SiC反射镜直接抛光后表面存在的微观缺陷,降低抛光后表面的粗糙度,提高表面质量,针对大口径SiC的特性,选择Si作为改性材料,利用磁控溅射技术对2m量级RB-SiC基底进行了表面改性。在自主研发的Φ3.2m的磁控溅射镀膜机上进行基底镀膜,利用计算机控制光学成型法对SiC基底进行了抛光改性。实验结果表明,改性层厚度达到15μm;在直径2.04m范围内,膜层厚度均匀性优于±2.5%;表面粗糙度由直接抛光的5.64nm(RMS)降低到0.78nm。由此说明磁控溅射技术能够用于大口径RB-SiC基底的表面改性,并且改性后大口径RB-SiC的性能可以满足高质量光学系统的要求。  相似文献   

14.
在利用单晶硅的各向异性腐蚀制作光栅的过程中,掩模与硅晶向的精密对准是获取大尺寸光栅结构的前提条件,高对准精度将显著降低光栅槽型侧壁粗糙度。设计并制作了一种扇形图案,通过以该图案为掩模的预刻蚀,可快速准确发现硅基底内晶格取向。通过此方法进行晶向标定,并利用紫外光刻与湿法刻蚀,成功研制了尺寸为15mm×15mm、高度为48.3μm、周期为5μm、高宽比为20的矩形光栅结构,线条侧壁粗糙度RMS值为0.404nm;利用全息光刻与湿法刻蚀成功研制了大高宽比深槽矩形光栅及三角形槽光栅。矩形槽光栅尺寸为50mm×60mm,高度为4.8μm,周期为333nm,高宽比为100,侧壁粗糙度RMS值为0.267nm。三角形槽光栅周期为2.5μm,侧壁粗糙度RMS值为0.406nm。  相似文献   

15.
为了解决长时数据存储的难题,开展了以数字格式在蓝宝石光盘表面写入数据的研究工作。根据艾林方程,分析了利用常用无机材料进行数据存储的数据失效时间。描述了在蓝宝石材料为基底的光盘上以数字格式记录数据的基本工艺流程,重点介绍了用于蓝宝石光盘的离子束刻蚀系统。实验结果显示,蓝宝石光盘表面刻蚀的信息坑宽度为0.6μm,深度为0.2μm,磁道节距为1.6μm,符合ISO/IEC 10149:1995规定的CD-ROM格式数据存储要求,表明采用本文提出的方法实现蓝宝石光盘的数字化数据存储是可行的。此外,这种基本工艺流程不仅适用于蓝宝石光盘,同样适用于其它以高度稳定的材料(如石英玻璃)作为基底的光盘。  相似文献   

16.
针对深部油气勘探的需要,研制了基于微机电系统(MEMS)的宽带电化学地震检波器。仿真分析了影响该检波器频带的结构参数,并对其MEMS实现及封装方法进行了研究。利用有限元软件分析绝缘层厚度和阴极孔径对检波器幅频特性的影响,得到了优化的几何参数。基于仿真结果,利用MENS工艺加工硅基的Pt电极和Su-8的绝缘层,然后用物理紧固的方法进行器件封装。最后,分别在水平振动台和基岩上进行了检波器的性能测试和微震监测实验。实验结果表明:无需进行频率补偿,由20μm孔径阴极和200μm厚绝缘层封装的器件的频带可扩展到3~90 Hz,低频扩展到60S的补偿额度小于30dB,检波器的动态范围不小于130dB。实验显示:这种改进的检波器可以作为宽带地震检波器用于深部或海底的油气勘探。  相似文献   

17.
激光冲击软模大面积微弯曲成形方法   总被引:1,自引:0,他引:1  
为了实现金属箔板大面积微弯曲成形,本文结合激光冲击微弯曲成形技术与软模成形技术的优点,提出了激光冲击软模大面积微弯曲成形方法。 该方法是在脉冲激光冲击波压力下,将软模作为柔性冲头作用于金属箔板来实现工件成形的。实验中使用了Innolas Gmbit公司生产的Spitlight 2000 THG脉冲激光器,将250 μm厚的聚氨酯橡胶薄膜作为软模,采用德国LPKF-ProtoMat-C60型雕刻机在印刷电路板上加工出深度为120 μm的U型多槽模具,实现了在厚度为30 μm的铜箔板上一次性对3个U型凹槽冲击成形。用KEYENCE VHX-1000C超景深三维显微系统进行工件观测,结果显示工件上的微成形槽具有良好的轮廓质量。以ANSYS/LS-DYNA为平台,使用有限元建模(FEM)方法对微弯曲过程进行了数值模拟。实验和模拟结果均表明,加载软模的工件与模具的U型凹槽特征在形状上更加接近,成形工件更加均匀,而且具有较好的表面质量,其最大平均成形深度可达110 μm,大于激光直接冲击成形的最大深度(88 μm),说明使用软模提高了充型能力。  相似文献   

18.
设计了一种用于大型光学载荷次镜在轨位姿精密调整的Hexapod型平台机构,并对其进行构型参数优化以及各支撑杆和上下铰点误差限的最优分配。建立了Hexapod平台机构运动学模型和静柔度模型,分析了主要结构参数对机构性能的影响。按照次镜精调机构性能要求,提出了定位精度指标和抗变形指标,建立了以构型参数为变量的优化目标函数,并利用遗传算法对两个单目标函数进行优化。利用加权分配法构造统一约束目标函数,利用遗传算法对其进行多目标优化。然后,建立非线性最优误差分配模型,对各支撑杆和上下铰点进行误差分配。最后,通过对原理样机性能指标的测试验证了上述研究方法的效果。研究结果表明:优化前后动平台定位精度提高了8.3%,抗变形能力提高了62.5%,铰点误差限由2.7μm提高到6.3μm,支撑杆误差限由1.3μm提高到3.2μm。另外,实验测得Z轴相对定位精度为0.6%,静刚度达到41.14N/μm。本研究提高了次镜精调机构的定位精度和静载抗变形能力,有助于缩短设计、加工周期,节约设计、加工成本。  相似文献   

19.
针对声表面波(SAW)传感器对品质因数、寿命和成本的要求,研制了Parylene增强型SAW传感器。根据金属剥离工艺要求,利用LOR剥离胶和AZ5214光刻胶双层胶旋涂工艺制作了梯形结构;在传统光学光刻条件下制作了2μm的超细叉指电极。传感器制作过程利用了MEMS工艺,不仅实现了传感器的微型化,还可以批量化生产,得到的以石英为基底的传感器谐振频率达到249.077 953 MHz。最后在传感器的表面镀制Parylene聚合物薄膜以提高基底温度灵敏度。实验对比了未增强型(未镀Parylene)和增强型SAW传感器(镀Parylene)的温度灵敏度。结果显示:未增强型SAW传感器温度灵敏度为2.048kHz/℃,Parylene增强型SAW传感器温度灵敏度为2.855kHz/℃,比前者提高了0.807kHz/℃,且镀Parylene之后谐振频率变化量与温度具有较好的线性度,线性相关系数达到0.996 15。实验证明,Parlene增强型SAW传感器的性能优于未增强的SAW传感器。  相似文献   

20.
为了提高和改善微沟槽表面质量,设计了高速微铣削实验,研究了微沟槽底面表面粗糙度和侧壁残留毛刺的变化规律。从理论角度引入了已加工表面的形成机理,建立了微观表面粗糙度理论模型,提出了刀具跳动对侧壁形貌变化影响的规律。利用三轴联动精密微细铣削机床加工微细直沟槽,并选取主轴转速、轴向切深、进给速度、刀具跳动量和材料组织结构为研究因素。采用多因素正交实验和极差分析法,对表面粗糙度值进行数值分析。铝合金,钢和钛合金三类微沟槽底面对应的最佳表面粗糙度值变化范围分别为1.073~1.481 μm,0.485~0.883 μm,0.235~0.267 μm;无刀具跳动钛合金微沟槽壁毛刺的最大高度为7.637 μm,而当刀具存在0.3 μm的径向综合跳动量时对应的微槽壁毛刺的最大高度为21.79 μm。铣削参数对表面粗糙度值的影响按从大到小依次为进给速度、主轴转速、轴向切深,且随着进给速度和轴向切深的增大,表面粗糙度值增大;随着主轴转速的增大,表面粗糙度值先减小后增大;在相同加工条件下,若微圆弧刀刃无磨损,微刀具的跳动量对微直沟槽侧壁表面质量有较大影响。同时,不同金属材料特性也是影响微沟槽表面质量的潜在因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号