共查询到20条相似文献,搜索用时 0 毫秒
1.
有效的变压吸附数值模拟和优化能够替代耗资耗时的变压吸附模化实验研究,并对新型变压吸附流程进行快速地评估。本文概述了数值模拟和优化变压吸附流程中涉及的偏微分和代数方程组,比较了一维、二维以及三维模型在描述变压吸附流程中的应用。简介了模拟变压吸附流程的数值方法,对模拟中相邻步骤边界条件的切换方式、偏微分方程组的离散形式和离散方法进行了评述。阐述了国内外变压吸附流程优化的研究进展,对优化中涉及的循环稳态定义方法、最优化算法进行了比较和分析。列举了国内外模拟和优化变压吸附在制氧、制氢、二氧化碳捕集等方面的研究实例和相关变压吸附优化的商业化软件,指出数值模拟和优化变压吸附流程目前面临的问题和未来发展的前景。 相似文献
2.
变压吸附分离技术的研究进展 总被引:7,自引:0,他引:7
简述了变压吸附技术在分离净化方面的应用,及其在分离提纯高沸组分中的研究进展,寻求进一步拓展变压吸附技术的应用领域,开发新型工业装置的途径。 相似文献
3.
简述了变压吸附技术在分离净化方面的应用,及其在分离提纯高沸点组分中的研究进展,寻求进一步拓展变压吸附技术的应用领域,开发新型工业装置的途径 相似文献
4.
5.
采用实验室自制的活性炭为吸附剂,进行了真空变压吸附(VPSA)分离氮气/甲烷的实验、模拟和控制研究。建立了一套双塔VPSA实验装置,并将其数学模型建立在gPROMS软件中,通过改变进料气流量做多组对比实验,通过模拟数据和实验数据的对比,验证了数学模型的准确性。通过双塔VPSA的模拟调试,可以将甲烷的纯度由30%提升到80%,同时保证83%的回收率。随后,针对实际生产中不可避免的状态干扰因素,选取了3种常见的扰动状况,以产品气纯度快速回归至80%为控制目标,根据本文所采用的VPSA系统设计了PID控制器,进行了模拟和控制的研究。研究结果表明,引入PID控制器可以使纯度受到扰动影响时较快速地回归至合格纯度,同时保证装置较为稳定的运行。 相似文献
6.
采用实验室自制的活性炭为吸附剂,进行了真空变压吸附(VPSA)分离氮气/甲烷的实验、模拟和控制研究。建立了一套双塔VPSA实验装置,并将其数学模型建立在g PROMS软件中,通过改变进料气流量做多组对比实验,通过模拟数据和实验数据的对比,验证了数学模型的准确性。通过双塔VPSA的模拟调试,可以将甲烷的纯度由30%提升到80%,同时保证83%的回收率。随后,针对实际生产中不可避免的状态干扰因素,选取了3种常见的扰动状况,以产品气纯度快速回归至80%为控制目标,根据本文所采用的VPSA系统设计了PID控制器,进行了模拟和控制的研究。研究结果表明,引入PID控制器可以使纯度受到扰动影响时较快速地回归至合格纯度,同时保证装置较为稳定的运行。 相似文献
7.
对变压吸附系统常用的吸附塔建立了数学模型并对气体在其内部的流动状况进行了数值计算。计算结果表明,传统吸附塔内部的流场分布很不均匀;特别是对于变压系统空分制氧系统常用的低高径比吸附塔,流场分布不均匀的现象非常严重。针对于此,本文对吸附塔的结构提出了一些改进的措施,并应用CFD的方法计算和优化。结果表明优化后的流场分布得到了明显的改善。 相似文献
8.
9.
10.
11.
12.
利用电路网络模型,对变压吸附制纯氧阀系数进行优化控制,在碳分子筛为第一级吸附,5A分子筛作为二级吸附工艺中,可得到浓度为99.06%,回收率为28.4%的氧气产品,从而提高了氧气的回收率,增加了单位吸附剂的生产能力,节省了动力消耗. 相似文献
13.
14.
15.
16.
目前工业上主要通过变压吸附技术从蒸汽甲烷重整气中制取氢产品气。然而,能源需求量的快速增加使得传统变压吸附技术在产量方面的不足越发明显。为此,进行了快速变压吸附从蒸汽甲烷重整气中制取氢气的模拟研究。采用活性炭和5A分子筛作为吸附剂,并以测得的原料气中各组分在两种吸附剂上的吸附数据为基础,进行了六塔快速变压吸附工艺的数值模拟与分析。在分析了塔内温度、压力和固相的浓度分布后,探究了进料流量、双层吸附剂高度比以及冲洗进料比三个操作参数对于快速变压吸附工艺性能的影响,结果表明:原料气组成为H2/CH4/CO/CO2=76%/3.5%/0.5%/20%,吸附压力为22 bar(1 bar=105 Pa),解吸吹扫压力为1.0 bar,处理量为0.8875 mol·s-1,吸附剂床层高度比为0.5∶0.5,冲洗进料比为22.37%时,可获得H2纯度99.90%,回收率69.88%,此时H2产量为0.4713 mol·s-1。相比之下,氢气纯度为99.90%时,尽管PSA工艺回收率为83.40%,但处理量只有0.39 mol·s-1,因此H2产量仅为0.2472 mol·s-1。 相似文献
17.
18.
19.