首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
共孔径消热差红外双波段光学系统   总被引:1,自引:0,他引:1  
设计了适用于制冷型320×256中波红外凝视焦平面阵列探测器和320×256长波红外凝视焦平面阵列探测器的共孔径消热差折反射式红外双波段光学系统。该系统在中波3.7~4.8μm,长波7.7~11.7μm,环境温度10~40℃下工作,其焦距为292mm,视场角为1.56°×1.875°,F/#为1.93,满足100%冷光阑效率。设计的系统共用主镜、次镜和准直镜组,利用分光镜实现中波红外、长波红外光谱分光,后接各自的校正镜组校正剩余像差。给出了设计原理、设计过程和工程设计时需考虑的一些因素,通过选择合适的光学材料、机械材料和分配光焦度,实现了两路系统在10~40℃环境温度下具有良好的成像性能。该系统成像质量良好、可加工性好、装配难度小、工程可实施性强。  相似文献   

2.
计算机获取三维图像信息,主要有被动成像和主动成像两大类,在主动式成像技术中,照明光的设计是最重要的。本文提出的以彩虹光谱作为主动光源是近几年才提出的新方法。文中简述了该方法的原理,分析了几种常用的彩虹状光谱获取方法,重点对以棱镜为色散元件的光学系统作了分析、设计、计算,并给出计算结果和结论  相似文献   

3.
针对实时广域高分辨率成像需求同时保证系统结构的小型化与轻量化,设计了高集成度共心多尺度光学成像系统。该系统采用伽利略型共心多尺度成像结构将球透镜与次级相机阵列进行级联,以充分利用双层共心球透镜视场大且全视场成像效果一致性好的特点,并发挥伽利略型共心多尺度结构体积紧凑的优势。此外,通过设计相机阵列的排列方式进一步减少相机使用数量,实现轻量化。通过全系统联动设计与优化,系统的调制传递函数曲线在特征频率270 lp/mm处可达0.3,全视场弥散斑均方根(RMS)半径均小于探测器像元尺寸1.85μm,成像效果优良,且公差分析结果表明系统易加工制造。该系统不仅能够有效实现大视场高分辨率成像,而且具有低的结构复杂度及更紧凑的结构,应用前景广阔。  相似文献   

4.
何红星 《光学精密工程》2017,25(7):1757-1763
为了克服单一光学通道长焦距与大视场之间的矛盾,设计了一款分孔径大变倍比三视场中波红外光学系统。该光学系统采用分孔径技术,包括小视场光学通道和中视场/大视场光学通道,两个通道之间的转换通过切出切入45°放置的反射镜完成,小视场光学通道采用二次成像,仅采用6片透镜,透过率高;中视场/大视场光学通道采用三次成像;小视场光学通道与中视场/大视场光学通道共用一片反射镜和中继组,实现了共出瞳分入瞳——分孔径;小视场长焦距为1 120mm,大视场短焦距为22.58mm,变倍比达到53×;对小视场光学通道进行了三次立体折叠,对中/大视场光学通道进行了一次折叠,有效地对横向和纵向尺寸进行了控制,外形包络在270mm×217mm×258mm范围内,系统紧凑,实现了兼具长焦距和大视场的三视场中波红外光学系统。设计及实验结果表明该光学系统像质良好,满足热像仪使用要求。  相似文献   

5.
针对空间成像系统与激光通信天线同时需要大口径光学系统而使卫星载荷质量增大的问题,提出了一种成像光学系统与收发合一激光通信天线共口径工作的新型光学系统。从像差理论出发,给出了以主次反射镜为共用部分、成像和通信工作在不同视场的共口径光学系统初始结构设计方法。实际设计了共口径光学系统,该系统口径为600mm,次镜遮拦比为0.225,成像系统的传递函数在50lp/mm时大于0.47,接近衍射极限;发射分系统波像差远小于λ/20,发射激光的最小束散角可达4μrad,出射光斑质量良好;接收系统达到衍射极限,光斑远小于探测端面,满足探测要求。最后,进行了公差分析,给出了光学系统的装调方法。该设计通过共用主次镜减少了系统总质量和总体积,同时满足空间成像和激光通信系统的性能要求。  相似文献   

6.
针对成像光谱仪通过狭缝进行线视场成像时存在的孔径较小、光学透过率较低等问题,研究了一种基于棱镜-光栅型分光结构的大孔径面视场成像光谱仪。该棱镜-光栅成像光谱仪采用表面浮雕型透射光栅,极大地降低了光栅的制作难度与成本。大孔径面视场的成像光谱仪相较于线视场成像光谱仪有较高光学效率和时间效率。但是面视场成像光谱仪的色畸变与谱线弯曲较难校正。本文将前端望远系统与分光系统进行一体化设计,满足远心光路匹配和孔径匹配,较好地校正了面视场光谱成像系统中的谱线弯曲和色畸变。并且通过加入非球面反射镜及校正镜很好的校正了由于大孔径面视场所引入的非对称性离轴像差。结果表明,设计的大孔径面视场PG成像光谱仪光谱波段范围400~1 000nm,光学调制传递函数达到0.65以上,光谱分辨率达2.5nm,全谱段不同视场的谱线弯曲小于5μm,色畸变小于8μm。  相似文献   

7.
以光电准直和针孔成像原理为基础,结合虚拟扩展成像面技术,提出了一种新型的大视场二维姿态角测量方案.以针孔光阑和高精度反射镜组构成其光学系统,从菲涅尔-基尔霍夫衍射理论出发,建立了光学系统的成像模型,通过计算机数值仿真,设计了光学系统的模式和最优参数.按照设计参数搭建实际测量系统,对设计方案进行了分析验证.结果表明,光学系统设计合理,可以满足大视场姿态角传感器的设计要求.  相似文献   

8.
基于光学自由曲面的离轴三反光学系统   总被引:1,自引:0,他引:1  
薛栋林  郑立功  张峰 《光学精密工程》2011,19(12):2813-2820
为了研制长焦距大视场离轴三反空间光学系统,描述了自由曲面光学数理模型,设计了基于自由曲面的离轴三反光学系统.针对焦距为4500 mm,成像视场角为11°,系统总长与焦距的比值为1/3的光学系统,对比分析了传统离轴三反光学系统和次镜为自由曲面的离轴三反光学系统的关键性能.在提出的光学系统中次镜采用自由曲面设计,提升了光学...  相似文献   

9.
多级投影式集成成像三维显示视场角拓展   总被引:1,自引:0,他引:1  
针对集成成像三维再现像的视场角较窄,实用化受限的问题,提出了一种拓展集成成像视场角的新方法,并基于多级投影技术构建了具有大视场角的三维集成成像系统。该系统利用多个投影仪并联投射不同级次的元素图像阵列并进行三维重构来获得大视场角的集成成像再现像。与传统的集成成像视场角拓展技术相比,所提方法具有系统结构简单、无需场镜等辅助光学器件;系统中没有机械运动,不会产生振动和噪声;以及可用于大尺寸集成成像显示系统的优点。光学实验结果表明,提出的多级投影式集成成像显示系统的再现像视场角为±35°,是传统的集成成像系统获得的视场角的2.92倍,明显拓展了视场角。  相似文献   

10.
新型遥感光学立体成像系统的光学系统设计   总被引:5,自引:4,他引:1  
用前视、直视和后视三个相机及相应的传感器阵列CCD以获取地面的不同视角下的信息,通过计算机处理得到地面的立体图像的技术是80年代发展起来的新型遥感光学立体成像技术,本文简述了遥感光学立体成像原理,详述了整个系统的主要参数斜视相机倾角、扫描频率、地面分辨率、直及斜视相机焦距和视场角的确定,对光学系统的设计进行了详尽的分析.设计出了性能很好、在系统中得到应用的光学系统.  相似文献   

11.
涡轮叶片三维叶尖间隙光纤检测系统   总被引:2,自引:0,他引:2  
航空发动机涡轮叶片叶尖间隙呈三维变化特点,传统光纤式叶尖间隙检测系统的测量结果受维间耦合影响精度差,信息源单一。本文利用一种沿直角等腰三角排布的三路双圈同轴式光纤传感基元组成的传感探头,通过BP神经网络解耦方法,实现了从传感器输出到叶尖端面径向间隙、轴向倾角和周向倾角三维参量的解耦。设计加工三维测量光纤传感器和后续调理电路并对检测系统进行了静、动态实验验证。实验结果表明:该系统径向间隙静态测量的最大误差为47μm,标准差为10μm,轴向和周向倾角的静态测量最大误差分别为0.49°和2.32°,标准差分别为0.13°和0.36°。系统具有良好的重复性和可靠性,径向间隙的动态测量标准差小于18μm,轴向和周向倾角的动态测量标准差小0.2°和0.5°,能够满足航空发动机涡轮叶片叶尖间隙三维参量快速实时检测的需求。  相似文献   

12.
王方雨  孙强  常颖  戴明  刘昕晖  王成 《光学精密工程》2018,26(11):2654-2661
为了实现高斯圆斑向平顶线斑的转化,提出了一种用于高斯光束整形的三反射镜光学系统。利用环形面对两个相互垂直方向的光线会聚、发散作用不同,标准球面具有旋转对称性质,以及二次曲面系数、非球面系数可以实现高斯分布转化为平顶分布的原理,采用ZPL语言与自动优化结合的方法完成了系统设计。设计得到了一个方向平顶的矩形光斑以及平顶线斑,整形效果良好,并结合在光学相干层析(OCT)系统中对样品照明或扫描的实际要求,通过小角度(±2°)旋转系统第一个反射镜对所得线斑进行扫描,在扫描角度内可以实现线性扫描(扫描范围约为10mm×11mm)。结果表明,该三反射镜系统满足轻量化、结构紧凑、不受工作波长影响的要求,是一种可行、有效的方案。  相似文献   

13.
用于大气遥感探测的临边成像光谱仪   总被引:8,自引:3,他引:5  
分析了大气临边成像光谱探测的原理,依据应用要求设计研制了光栅色散型紫外/可见临边成像光谱仪原理样机。该样机采用宽波段折射式消色差前置望远光学系统与改进的Czerny-Turner光谱成像系统匹配的结构形式,工作波段为540~800nm(一级光谱)和270~400nm(二级光谱),通过切换紫外、可见带通滤光片来实现两个波段分别探测,质量为8kg,体积为450mm×250mm×200mm。用该样机进行了实验室光谱实验,并对光谱分辨率进行了分析,测量了该样机的实际光谱分辨率。测量结果表明,该样机的实际光谱分辨率为1.3nm,接近其理论光谱分辨率1.12nm,满足设计指标1.4nm的要求,并具有体积小、质量轻等特点,适合空间遥感应用。  相似文献   

14.
综合使用反射/折射/谐衍射光学元件构建混合光学系统,实现可见、中波红外与长波红外三个波段的融合成像。利用卡塞格林系统主镜作为三波段共同通光孔径,次镜实现可见与红外波段分离;采用谐衍射光学元件与舒普曼结构实现一种材料消除红外系统色差;通过二次成像实现红外波段100%冷光阑效率,简化结构,成像质量接近衍射极限。  相似文献   

15.
大口径拼接式合成孔径光学系统设计   总被引:3,自引:2,他引:1  
在三反消像散系统基础上,介绍了一种大视场长焦子孔径合成光学成像系统的设计方法。在对子出瞳波前利用菲涅尔衍射直接积分叠加的基础上进行像质评估,以实现对拼接镜面的全面仿真和分析;用非序列面误差分析和分配的结果修改初始结构;通过高次曲面平衡象差,并在结构优化时使用较小F数的系统,增加结构对子镜的失调的误差冗余度,迭代完成系统的最终设计。设计了一个同轴三反子孔径合成光学成像系统,焦距44m,f/8,7子镜拼接,视场角达0.6°×0.06°,通过不断迭代,获得了较好的结构和成像质量。  相似文献   

16.
南学芳  张宇  郁敏  李楠  杨杰  高秀敏 《光学仪器》2016,38(3):209-215
激光气体遥测仪是基于红外气体吸收光谱原理,采用先进的可调谐半导体激光吸收光谱(TDLAS)技术分析测量被测区域(如传输管道、天花板、墙体等)内的甲烷气体平均浓度的新型仪表。性能优良的激光气体遥测仪表已在许多危险领域得到了广泛的应用,但是,目前整机测试系统流程复杂、费时、低效。结合相关生产实践开发一种较为实用的整机测试自动化软件,以提高整机测试的效率。目前已有效地帮助生产相关人员快速、准确地完成整机测试流程。  相似文献   

17.
吉林一号轻型高分辨率遥感卫星光学成像技术   总被引:1,自引:0,他引:1  
徐伟  金光  王家骐 《光学精密工程》2017,25(8):1969-1978
为了实现吉林一号光学遥感卫星轻量化设计与高分辨率多光谱多模式成像,采用星载一体化设计理念及敏捷多模式成像策略,完成了吉林一号卫星的指标、方案及关键技术的设计与在轨多模式光学成像。吉林一号整星的质量为450kg,有效载荷比高达40%,机动能力达2.1(°)/s,可实现大侧摆、同轨立体与条带拼接等多模式成像,结合星上800GB的FLASH存储能力和X波段双通道600 Mbps的数据传输能力,卫星每天可获取近150 000km~2的图像数据。吉林一号轻型高分辨率光学卫星于2015年发射入轨,运行在656km太阳同步轨道,地面全色和多光谱分辨率分别优于0.72m和2.88m,满足多行业应用及商业化运营的需求。  相似文献   

18.
窗口融合特征对比度的光学遥感目标检测   总被引:1,自引:0,他引:1  
提出了一种基于窗口融合特征对比度的光学遥感目标检测方法。首先,在训练图像上生成大量不同尺寸的滑动窗,计算了各窗口的多尺度显著度、仿射协变区域对比度、边缘密度对比度以及超像素完整度4项特征分值,在确认集上基于窗口重合度和后验概率最大化学习各个特征的阈值参数。然后,采用Naive Bayes框架进行特征融合,并训练分类器。在目标检测阶段首先计算测试图像中各窗口的多尺度显著度分值,初步筛选出显著度高且符合待检测目标尺寸比例的部分窗口。然后计算初选窗口集的其余3项特征,再根据训练好的分类模型计算各个窗口的后验概率。最后,挑选出局部高分值的候选区域并进行判断合并,得到最终目标检测结果。针对飞机、油罐、舰船等3类遥感目标的检测结果显示:4类特征在单独描述3类目标时表现出的性能各有差异,最高检测准确率为74.21%~80.32%,而融合方案能够综合考虑目标自身特点,准确率提高至80.78~87.30%。与固定数量滑动窗方法相比,准确率从约80%提高到约85%,虚警率从20%左右降低为3%左右。最终高分值区域数降低约90%,测试时间减少约25%。得到的结果显示该方法大大提高了目标检测精度和算法效率。  相似文献   

19.
基于Web的液压系统远程设计的研究   总被引:1,自引:0,他引:1  
吕桂华  吴荣珍  熊瑞平  朱宝 《机械》2002,29(6):31-34
介绍了基于Web的液压系统远程设计的实现原理、方法、意义、组成结构及其主要功能特点,着重介绍远程工程专家系统的推理机制,知识表达方法以及系统的模块设计和基于COM的软件设计技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号