首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
镱薄膜应力传感器的工艺研究   总被引:1,自引:0,他引:1  
介绍了镱薄膜应力传感器的工艺设计和制造过程,通过传感器的静态,动态标定及材料测试,验证了新的工艺设计和制造过程是正确可行的。  相似文献   

2.
凌秀兰  黄伟 《光学仪器》2006,28(5):71-74
研究了不同沉积方式和工艺参数对沉积在K 9基底上的单层ZnS、Y bF3薄膜和多层ZnS/Y bF3薄膜缺陷的影响,发现基底温度和蒸发速率等工艺参数对缺陷的产生有较大的影响,太高或太低的基底温度和蒸发速率都会导致缺陷增加,采用电子束蒸发和蒸发源形状不同的阻蒸蒸发方式,缺陷密度分布有较大的差异。通过比较不同蒸发方式和工艺参数所镀薄膜的缺陷密度,找到了现有工艺条件下缺陷密度最小的最佳蒸发方式和工艺参数。  相似文献   

3.
采用溅射技术,对薄膜沉积的相关工艺参数进行了优化,获得了电阻温度系数TCR≤±10×10-6/℃的锰铜薄膜.该项技术为锰铜传感器的薄膜化奠定了基础,同时也可用于制作锰铜薄膜精密电阻器.  相似文献   

4.
研究了在石英基底上制备PZT薄膜,通过在石英基底上制备氮化硅沉积层来改善PZT薄膜质量。运用PECVD技术在石英基底上制备氮化硅沉积层,使用溶胶-凝胶法在沉积层上制备锆钛酸铅(PZT)薄膜,并对PZT薄膜的性能进行了表征。氮化硅沉积层的厚度选为500 nm,PZT薄膜的制备厚度选为1μm,对PZT薄膜的晶向、漏电流、介电性能和铁电性能进行了表征,结果表明在拥有氮化硅沉积层的石英基底上能够制备出性能优良的PZT薄膜。  相似文献   

5.
分析了以环己烷和无水乙醇的混合液为体系的化学溶液沉积法在制备红外上转换薄膜时存在的问题,提出了部分改进措施。在此基础上,又提出了以硅酸钾和氯化钡的水溶液为体系的化学溶液沉积方案,并详细介绍了改进后的ZnS:Cu,Pb,Mn薄膜的制备步骤。以该方案制备的薄膜成本更加低廉,工艺更加简单,而且具有更好的成膜质量。  相似文献   

6.
超低温薄膜压力传感器可用于液氢、液氮、液氧等低温环境的压力测量,目前国内外超低温压力传感器产品的工作温度最低为-200 ℃.文中主要介绍了对超低温薄膜压力传感器的研究,通过薄膜压力传感器设计和工艺技术研究,成功研制出超低温薄膜压力传感器,并在-253(液氢)~+60 ℃温度环境下进行压力传感器静态性能测试,结果表明传感器性能指标优异,实现了超低温薄膜压力传感器技术突破.  相似文献   

7.
采用射频磁控溅射法,纯Ar溅射石墨靶,制备出了类金刚石薄膜,并对薄膜沉积速率随各工艺参数的变化规律、薄膜结构以及光学性能进行了系统的研究。结果表明,沉积速率随射频功率、CH4流量和溅射气压的增大而增大;随温度的增大呈现先增大后小的趋势。结构分析发现,所制备的DLC薄膜是由sp2键镶嵌在sp3键基体中构成的。在3μm~5μm波段对Si衬底有明显的增透效果。  相似文献   

8.
射频磁控反应溅射法制备Y2O3薄膜的工艺研究   总被引:1,自引:0,他引:1  
采用射频磁控反应溅射法制备氧化钇(Y2O3)薄膜。系统研究了工艺参数对Y2O3薄膜沉积速率的影响规律,使用X射线光电子能谱仪(XPS)分析表征了薄膜的成分。结果表明,Y2O3薄膜的沉积速率随射频功率的增大而增大,在合适的溅射压强下沉积速率呈现极大值,O2/Ar气体流量比和衬底温度的影响不明显,对此从理论上进行了解释。制备的薄膜中Y和O元素的原子浓度基本符合Y2O3的化学计量比。  相似文献   

9.
考察了基底负偏压对类金刚石薄膜(DLC)在无水和有水环境下摩擦性能的影响。利用电子回旋共振等离子体化学气相方法沉积制备DLC薄膜,利用激光拉曼(Raman)、原子力显微镜(AFM)和纳米硬度计表征了其结构特征,用UMT型多功能摩擦磨损实验机考察了其摩擦性能,并用光学显微镜分析了磨痕特征。结果表明:随着基底偏压的增加,表面粗糙度减小;在无水条件下,基底偏压较低的DLC薄膜摩擦因数较高,并存在一定的波动性,基底偏压较高时,摩擦因数较低。在有水条件下,基底偏压对摩擦因数影响不大。总体来说,加水后薄膜磨损较为严重。  相似文献   

10.
提高CVD金刚石薄膜刀具膜—基附着力的工艺方法评述   总被引:7,自引:2,他引:5  
提高金刚石薄膜与硬质合金基底之间的附着力是CVD金刚石薄膜刀具得以推广应用的关键因素。本文介绍了国内外采用CVD法制备金刚石薄膜刀具时提高膜—基附着力的典型工艺方法 ,评述了WC Co基底预处理及沉积工艺对CVD金刚石薄膜与基底之间附着力的影响  相似文献   

11.
ZrO2 (Y2O3) with different contents of BaF2/CaF2 and Mo were fabricated by hot pressed sintering, and the tribological behavior of the composites against SiC ceramic was investigated from room temperature to 1000 °C. It was found that the ZrO2 (Y2O3)-5BaF2/CaF2-10Mo composite possessed excellent self-lubricating and anti-wear properties. The low friction and wear were attributed to enhanced matrix and BaMoO4 formed on the worn surfaces.  相似文献   

12.
13.
A recent paper by Hu et al. claimed synthesis of the MAX-phase Ti3SiC2at 100–300 °C using pulsed laser deposition. In this comment, we find that the evidence presented by Hu et al. is insufficient to show Ti3SiC2 formation. In fact, there is a simpler interpretation of their results from X-ray diffraction and transmission electron microscopy, namely that the material produced is a cubic TiC-based compound.  相似文献   

14.
J.H. Ouyang  S. Sasaki  T. Murakami  K. Umeda 《Wear》2005,258(9):1444-1454
Spark-plasma sintering is employed to synthesize self-lubricating ZrO2(Y2O3) matrix composites with different additives of CaF2 and Ag as solid lubricants by tailoring the composition and by adjusting the sintering temperature. The friction and wear behavior of ZrO2(Y2O3) matrix composites have been investigated in dry sliding against an alumina ball from room temperature to 800 °C. The effective self-lubrication at different temperatures depends mainly on the content of various solid lubricants in the composites. The addition of 35 wt.% Ag and 30 wt.% CaF2 in the ZrO2(Y2O3) matrix can promote the formation of a well-covered lubricating film, and effectively reduce the friction and wear over the entire temperature range studied. The friction coefficients at low temperatures were at a minimum value for the composite containing 35 wt.% of silver. At this silver concentration, low and intermediate temperature lubricating properties are greatly improved without affecting high-temperature lubrication by the calcium fluoride in ZrO2(Y2O3) matrix composites. The worn surfaces and transfer films formed during wear process have been characterized to identify the synergistic lubrication behavior of CaF2 and Ag lubricants at different temperatures.  相似文献   

15.
Al2O3–50BaSO4–20Ag, Al2O3–50BaSO4–10SiO2, Al2O3–50(mass%)SrSO4, Al2O3–50PbSO4–5SiO2, Al2O3–50BaSO4 and Al2O3–50BaCrO4 composites (mass%) were prepared by spark plasma sintering and their microstructure and high-temperature tribological properties were evaluated. Al2O3–50BaSO4–20Ag composites (mass%) showed the lowest friction coefficients at the temperature ranging from 473 to 1073 K. Thin Ag film was observed on the wear tracks of the composites above 473 K. In addition, the friction coefficients of Al2O3 composites containing SrSO4 and PbSO4 were as low as those of Al2O3–BaSO4 and Al2O3–BaCrO4 composites at the temperatures up to 1073 K. The thin films formed on the wear tracks of the Al2O3–SrSO4 composites were composed of Al2O3 and SrSO4 phases, while the films formed on the wear tracks of the Al2O3–PbSO4–SiO2 composites consisted of Al2O3, PbSO4 and SiO2 phases.  相似文献   

16.
Al2O3 and Cr2O3 coatings were deposited by atmospheric plasma spraying and their tribological properties dry sliding against copper alloy were evaluated using a block-on-ring configuration at room temperature. It was found that the wear resistance of Al2O3 coating was superior to that of the Cr2O3 coating under the conditions used in the present study. This mainly attributed to its better thermal conductivity of Al2O3 coating, which was considered to effectively facilitate the dissipation of tribological heat and alleviate the reduction of hardness due to the accumulated tribological heat. As for the Al2O3 coating, the wear mechanism was plastic deformation along with some micro-abrasion and fatigue-induced brittle fracture, while the failure of Cr2O3 coating was predominantly the crack propagation-induced detachment of transferred films and splats spallation.  相似文献   

17.
Xian Jia  Xiaomei Ling 《Wear》2005,258(9):1342-1347
In the present study, the abrasive wear characteristics of Al2O3/PA1010 composite coatings were tested on the turnplate abrasive wear testing machine. Steel 45 (quenched and low-temperature tempered) was used as a reference material. The experimental results showed that when the Al2O3 particles have been treated with a silane coupling agent (γ-aminopropyl-triethoxysilane), the abrasive wear resistance of Al2O3/PA1010 composite coatings has a good linear relationship with the volume fraction of Al2O3 particles in Al2O3/PA1010 composite coatings and the linear correlation coefficient is 0.979. Under the experimental conditions, the size of Al2O3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance of Al2O3/PA1010 composite coatings. By treating the surface of Al2O3 particles with the silane coupling agent, the distribution of Al2O3 particles in PA1010 matrix is more homogeneous and the bonding state between Al2O3 particles and PA1010 matrix is better. Therefore, the Al2O3 particles make the Al2O3/PA1010 composite coatings have better abrasive wear resistance than PA1010 coating. The wear resistance of Al2O3/PA1010 composite coatings is about 45% compared with that of steel 45.  相似文献   

18.
The tribological behaviors of tungsten carbide (WC) based cermet/Ti3SiC2 tribo-pair at elevated temperatures were investigated. Lead oxide (PbO) was added as a solid lubricant. The tribo-physical and tribo-chemical changes on sliding surfaces were studied in detail. The results indicated that adhesive and abrasive wear due to removal of metallic binder and pullout of grains were the dominant wear mechanisms at room temperature. At high temperature, tribo-physical changes (i.e. mechanical mixture or sintering) and tribo-chemical reactions including complex reaction and oxidations were induced by frictional heat combined with high environmental temperature. As a result PbWO4 was formed as a reaction product and acted as a solid lubricant. PbWO4 and tribo-oxides along with the physically changed layer on the sliding surfaces were favorable to reduce wear of both materials. At high temperature, the wear mechanism varied from adhesive and abrasive wear at room temperature to lubrication by tribo-layer containing PbWO4, tribo-oxides, and sinters at high temperatures.  相似文献   

19.
A Ni3Al matrix high temperature self-lubricating composite Ni3Al-BaF2-CaF2-Ag-Cr was fabricated by the powder metallurgy technique, and tribological behavior at a wide temperature range from room temperature to 800 °C was investigated. The results indicated that the composite exhibited low friction coefficients (0.30-0.36) and wear rates (0.65-2.45×10−4 mm3 N−1 m−1). It was found that the low friction coefficient was attributed to the synergistic effects of Ag, fluorides and chromates formed in the tribo-chemical reaction at high temperatures. The low wear rate of the composite was due to the high strength and the excellent lubricating properties.  相似文献   

20.
The tribological properties of Ni3Al-Cr7C3 composite coating under water lubrication were examined by using a ball-on-disc reciprocating tribotester. The effects of load and sliding speed on wear rate of the coating were investigated. The worn surface of the coating was analyzed using electron probe microscopy analysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The results show the friction coefficient of the coating is decreased under water lubrication. The wear rate of the coating linearly increases with the load. At high sliding speed, the wear rate of the coating is dramatically increased and a large amount of the counterpart material is transferred to the coating worn surface. The low friction of the coating under water lubrication is due to the oxidizing of the worn surface in the wear. The wear mechanism of the coating is plastic deformation at low normal load and sliding speed. However, the wear mechanism transforms to microfracture and microploughing at high load with low sliding speed, and oxidation wear at high sliding speed. It is concluded that the contribution of the sliding speed to an increase in the coating wear is larger than that of the normal load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号