首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了制备磁性荧光以及光电化学性能良好的多功能纳米粒子,采用微相乳液法,用二氧化硅(SiO_2)包裹Fe_3O_4磁性纳米粒子的同时,将苝酰胺与SiO_2表面的羟基反应,生成共价键连接的Fe_3O_4@SiO_2-(1a)和Fe_3O_4@SiO_2-(2a)纳米粒子,用红外光谱、XRD、SEM、UV-Vis吸收光谱、荧光光谱及ECL进行表征。结果表明,与化合物1a、2a相比,复合物Fe_3O_4@SiO_2-(1a/2a)的电子吸收和荧光光谱峰型相同,峰位置略有移动。在一定浓度范围内,Fe_3O_4@SiO_2-(2a)纳米粒子的ECL强度随浓度增大而降低,且其在50~100 s的区间内基本稳定。  相似文献   

2.
为了制备磁性荧光以及光电化学性能良好的多功能纳米粒子,采用微相乳液法,用二氧化硅(SiO_2)包裹Fe_3O_4磁性纳米粒子的同时,将苝酰胺与SiO_2表面的羟基反应,生成共价键连接的Fe_3O_4@SiO_2-(1a)和Fe_3O_4@SiO_2-(2a)纳米粒子,用红外光谱、XRD、SEM、UV-Vis吸收光谱、荧光光谱及ECL进行表征。结果表明,与化合物1a、2a相比,复合物Fe_3O_4@SiO_2-(1a/2a)的电子吸收和荧光光谱峰型相同,峰位置略有移动。在一定浓度范围内,Fe_3O_4@SiO_2-(2a)纳米粒子的ECL强度随浓度增大而降低,且其在50100 s的区间内基本稳定。  相似文献   

3.
通过两种方法制备Fe_3O_4@SiO_2纳米粒子,并对两种不同的方法进行对比。发现一步法合成的Fe_3O_4@SiO_2纳米粒子,操作简单,并且性能优异。利用透射电镜TEM对复合微粒的粒径和物相组成进行表征。利用磁滞回线对其进行磁性能评价。结果表明Fe_3O_4@SiO_2纳米粒子粒径粒径25 nm左右,并且具有高饱和磁化率的超顺磁性能,其剩余饱和磁化率高达50 emu·g~(-1),分散稳定性好。  相似文献   

4.
水中重金属的脱除是污水处理中的重要内容。吸附法是一种除去水中重金属污染的简单高效的方法。磁性吸附剂具有成本低、无二次污染、吸附率高、便于分离和再生等特点,在污水处理上有着重要的应用前景。本文采用溶剂热法制备磁性Fe_3O_4纳米粒子,考察了外部条件对磁性Fe_3O_4纳米粒子生成的影响,确定了制备磁性Fe_3O_4纳米粒子的最佳条件。制备了Fe_3O_4@SiO_2复合微球,通过将壳聚糖键合到颗粒表面并接枝三乙烯四胺改性,得到氨基修饰的磁性Fe_3O_4纳米粒子。  相似文献   

5.
采用水解法合成了核壳型Fe_3O_4@SiO_2载体,用等体积浸渍法在磁性Fe_3O_4@SiO_2载体表面负载CuCl_2,得到Fe_3O_4@SiO_2-Cu磁性纳米粒子吸附剂。采用XRD、TEM、FT-IR、XPS、N_2吸附-脱附和振动样品强磁计(VSM)等表征手段对制备的吸附剂进行表征,考察了吸附剂对模型汽油中不同硫化物的脱硫性能。结果表明,核壳型Fe_3O_4@SiO_2载体的比表面积为246.5 m~2/g,同时饱和磁强度为44.6 emu/g。负载铜离子后,Fe_3O_4@SiO_2-Cu的饱和磁强度为43.9 emu/g。Fe_3O_4@SiO_2-Cu吸附剂可有效吸附噻吩类硫化物,硫容可达1.42 mg(S)/g(吸附剂)。采用先醇洗后焙烧的方法对失活吸附剂进行再生,吸附剂循环使用5次后仍能保持良好的再生稳定性。  相似文献   

6.
采用层层自组装法成功制备了兼具磁性和光催化活性的双功能Fe_3O_4@SiO_2/(TiO_2/PW_(12))_(10)复合微球,利用扫描电镜、红外光谱和X-射线能谱仪对所得微球进行了结构和形貌的表征。以甲基橙为模型污染物,研究了紫外光下Fe_3O_4@SiO_2/(TiO_2/PW_(12))_(10)的光催化性质,系统考察了甲基橙溶液的初始浓度、溶液pH和无机氧化剂碘酸钾对复合膜催化效率的影响。动力学研究表明,在不同浓度甲基橙溶液中,染料的光催化降解遵循表观一级反应动力学。磁性Fe_3O_4纳米粒子的使用实现了反应后催化剂方便、快速和高效地分离回收。  相似文献   

7.
本文制备了具有核/壳结构的磁性纳米颗粒Fe_3O_4@SiO_2,用马来酸酐和均苯四甲酸酐分别对Fe_3O_4@SiO_2纳米粒子进行接枝改性,分别标记为Fe_3O_4@SiO_2@M和Fe_3O_4@SiO_2@P,使其带有较多的负电荷,形成对金属离子有吸附作用的阴离子吸附剂。考察了两种吸附剂对水中Ni~(2+)的吸附性能。结果表明,两种吸附剂对低浓度的Ni~(2+)有较好的吸附作用。当Ni~(2+)浓度小于0.5g·L~(-1)时,两种吸附剂对Ni~(2+)去除效率均可达到100%。当吸附剂用量一定时,随Ni~(2+)浓度增加,去除率下降。  相似文献   

8.
以Fe_3O_4纳米粒子为核、丙烯酸酯为壳,通过溶剂热法制备了Fe_3O_4@SiO_2@IPDI-HEA纳米粒子。通过IR、TEM和XRD对其结构进行了表征,通过光差热扫描(photo-DSC)和TGA考察了该纳米粒子对水性有机硅聚氨酯光固化体系性能的影响。结果表明:Fe_3O_4@SiO_2@IPDI-HEA粒子的加入,对体系的光聚合性能没有明显影响,但可明显提高固化膜的耐热性和拉伸强度,当Fe_3O_4@SiO_2@IPDI-HEA的质量分数为1.5%时,固化膜的初始分解温度(T5%)增加了21.9℃,拉伸强度增加了6.9MPa。并且,Fe_3O_4@SiO_2@IPDI-HEA可以赋予光固化膜一定的电磁性能,当频率在0~(1×10~7) Hz内时,其介电常数均在4以上。  相似文献   

9.
邢艳  呼国茂  王燕  马向荣 《工业催化》2018,26(12):50-54
以FeSO_4·7H_2O为单一铁源,浓氨水为沉淀剂,柠檬酸钠为表面改性剂利用简单回流法快速合成Fe_3O_4磁性纳米粒子。考察反应时间,反应温度及浓氨水加入方式对合成Fe_3O_4磁性纳米粒子的影响,并利用动态光散射仪、傅立叶红外射线光谱仪及透射扫描电镜等对合成的Fe_3O_4磁性纳米粒子进行表征。结果表明,以柠檬酸钠为表面改性剂,逐滴加入浓氨水,反应温度为(70~80)℃和反应时间为6 min时,获得的Fe_3O_4磁性纳米粒子在水中具有良好的分散性及磁响应性。Zeta电位和红外光谱同时表明,柠檬酸钠成功地吸附于Fe_3O_4磁性纳米粒子的表面(Fe_3O_4@SC),且Zeta电位值为-31.3 mV;透射扫描电镜显示获得的Fe_3O_4@SC磁性纳米粒子呈球状结构,粒径约为10 nm。  相似文献   

10.
以Fe_3O_4@SiO_2粒子为磁性填料,合成了PUU/Fe_3O_4@SiO_2复合材料,并对PUU/Fe_3O_4@SiO_2复合材料的形状记忆性能和再加工性能进行研究。结果表明:随着Fe_3O_4@SiO_2粒子含量的逐渐增大,材料热致形状回复所需时间不断缩短,当Fe_3O_4@SiO_2粒子含量为5%时,形状回复时间为134 s,形状固定率为100%,形状回复率为94.44%;当Fe_3O_4@SiO_2粒子含量为5%时,材料具有磁致形状记忆行为,形状固定率为100%,形状回复率为72.22%。PUU/Fe_3O_4@SiO_2复合材料具有可再加工性,随着Fe_3O_4@SiO_2粒子含量逐渐增大,材料再加工所需温度由69℃提高至77℃。  相似文献   

11.
《粘接》2018,(12)
设计合成了一种带有刚性桥环结构的水性有机硅聚氨酯丙烯酸酯低聚物(WIBSPUA)和一种被SiO_2和氨基甲酸酯改性的可光聚合Fe_3O_4纳米粒子(Fe_3O_4@SiO_2@IPDI-HEA)。研究了该纳米粒子对WIBSPUA光固化体系的性能影响。结果表明,WIBSPUA/Fe_3O_4@SiO_2@IPDI-HEA杂化体系具有优异的光聚合性能,最终双键转化率达到85%以上;纳米粒子的加入明显提高光固化膜的耐热性和拉伸强度,当Fe_3O_4@SiO_2@IPDI-HEA添加质量为1.5%时,固化膜的初始降解温度(T_(5%))达到221.3℃,拉伸强度为29.4MPa。并且Fe_3O_4@SiO_2@IPDI-HEA可以赋予光固化膜较好的电磁性能,有望用于水性光固化吸波材料。  相似文献   

12.
采用共沉淀法耦合溶胶-凝胶法制备了核壳结构的磁性颗粒Fe_3O_4@SiO_2@Ti O_2,将其负载在活性炭(AC表面,制得新型光催化剂Fe_3O_4@SiO_2@Ti O_2-AC。采用SEM、FTIR、XRD、VSM对材料进行表征,并探究该催化剂对水中腐殖酸(HA)的去除效能。结果表明,以400 W高压汞灯作为光源,投加量为200 mg/L时,60 min内对初始质量浓度为5 mg/L、pH为7的含HA水样去除率可达96.1%。Fe_3O_4@SiO_2@Ti O_2-AC对HA的光催化降解符合LangmuirHinshelwood(L-H)动力学模型。Fe_3O_4@SiO_2@Ti O_2与AC存在协同作用,可有效增强复合光催化剂的催化效能。材料具有较好的催化稳定性,5次重复使用后,对水样中HA的去除率仍能达到84.7%。  相似文献   

13.
采用共沉淀法制备了磁性Fe_3O_4纳米粒子(Fe_3O_4 NPs),通过多巴胺(DA)原位氧化聚合的方式,将聚多巴胺(PDA)引入到Fe_3O_4NPs表面,制备了PDA包覆Fe_3O_4纳米粒子(Fe_3O_4@PDA NPs)。通过TEM、XRD、FTIR、XPS对粒子的形貌、结构及组成进行了表征。随后将其作为异相芬顿(Fenton)催化剂用于催化亚甲基蓝(MB)的氧化降解,对该催化剂的催化活性及稳定性进行了考察,探讨了催化反应的机理。结果表明:Fe_3O_4NPs作为催化剂时,,MB 2 h脱除率为26%,而Fe_3O_4@PDA NPs作为催化剂时,30 min,MB的脱除率为99%。具有酚醌单元的PDA可促进Fe~(3+)与Fe~(2+)间的循环,使得Fe_3O_4@PDA NPs较之Fe_3O_4NPs具有更强的催化活性。此外,Fe_3O_4@PDA NPs稳定性良好,可实现2次回收再利用,对活性降低的Fe_3O_4@PDA NPs用NaBH_4处理后,仍具有催化降解MB反应的能力。  相似文献   

14.
本文通过水热法合成了Fe_3O_4磁性纳米颗粒,采用3-氨丙基三甲氧基硅烷(APTMS)对Fe_3O_4颗粒进行表面修饰,得到氨基化磁性微粒,并表征其性能。并用氨基化Fe_3O_4磁性纳米粒子构建铜离子吸附体系。实验结果表明,Fe_3O_4纳米粒子和功能化Fe_3O_4纳米粒子的磁饱和强度值(M)分别为78和59emu·g~(-1)。最终确定的最优工艺组合为:APTMS@Fe_3O_4添加量2mL,温度30℃,吸附时间15min。  相似文献   

15.
为了获得水溶性Fe_3O_4纳米粒子,以聚乙二醇(PEG)磷酸酯为亲水性配体,在甲苯/四氢呋喃/水三元混合溶剂体系下通过快速配体交换法将油酸包覆的油溶性磁性Fe_3O_4纳米粒子转变成聚乙二醇磷酸酯包覆的水溶性Fe_3O_4纳米粒子。考察了四氢呋喃等溶剂在实现快速配体交换中所起到的作用。利用透射电子显微镜(TEM)、动态光散射(DLS)、X射线粉末衍射仪(XRD)、傅立叶红外光谱仪(FTIR)、振动样品磁强计(VSM)对磁性Fe_3O_4纳米粒子进行了分析表征。结果表明:四氢呋喃可以促进PEG磷酸酯与Fe_3O_4纳米粒子表面的有效接触并使得油酸分子从纳米粒子表面快速地脱附下来,此外,还消除了配体交换过程中出现的乳化效应。四氢呋喃的应用实现了快速配体交换法制备水溶性PEG磷酸酯包覆的磁性纳米粒子。  相似文献   

16.
采用聚乙二醇(PEG)将合成的Fe_3O_4纳米粒子进行包覆制备了亲水性磁流体(Fe_3O_4@PEG),采用共沉淀法将Fe_3O_4@PEG与三聚氰胺脲醛树脂(MUFRs)预聚物作用制得磁性三聚氰胺脲醛树脂,并利用X射线衍射仪、傅里叶变换红外光谱仪、扫描电子显微镜等对磁性三聚氰胺脲醛树脂进行了表征。结果表明:合成的Fe_3O_4为纳米粒子;高分子包覆对Fe_3O_4的晶体结构和晶粒粒径没有明显影响;当Fe_3O_4@PEG与MUFRs的质量比为2∶1时,磁流体包覆完整,制得的磁性三聚氰胺脲醛树脂微球外观光滑,球形度好且粒径分布均匀。  相似文献   

17.
采用两步法成功制备核壳结构复合材料Fe_3O_4@SiO_2@Y_2O_3∶Eu~(3+)纳米球。首先通过溶胶-凝胶法制备包覆均匀的Fe_3O_4@SiO_2纳米球,然后以它为载体,用水热法将Y3+/Eu3+的水合化合物均匀生长到Fe_3O_4@SiO_2纳米球表面,退火后获得目标产物。利用X射线衍射(XRD)、能谱仪(EDS)、场发射扫描电子显微镜(FESEM)对产物进行表征。结果表明:Fe_3O_4、SiO_2和Y_2O_3∶Eu~(3+)之间为物理结合;该复合纳米球直径约350nm,壳层包覆非常均匀且颗粒分散性良好。该文结合制备过程总结出该复合材料的可控生长条件,样品的分散性与防氧化保护尤为重要。  相似文献   

18.
Fe_3O_4-SiO_2负载型磷钼杂多酸催化制备生物柴油   总被引:1,自引:0,他引:1  
刘峥  王松梅  高星 《工业催化》2010,18(2):49-53
利用共沉淀法制备分散性好、比表面积大和磁性强的Fe_3O_4磁粒颗粒。以正硅酸乙酯为前驱体,对Fe_3O_4磁粒子表面进行改性,制备了Fe_3O_4-SiO_2磁性粒子。以Fe_3O_4-SiO_2为磁性载体,利用溶胶-凝胶法将强酸性的磷钼杂多酸负载于磁性颗粒中,制得微米级磁载杂多酸催化剂。利用X射线粉末衍射、红外光谱、扫描电子显微镜和电子能谱等分析测试手段,对催化剂进行了结构表征。结果表明,磷钼酸包覆在SiO_2微孔孔壁中,保持了Keggin结构,确保其在催化反应中有较高活性。以酯转化率作为评价磁载杂多酸催化活性的指标,以餐饮业废油为原料,利用L_9(3~4)正交表进行正交实验,得出生物柴油的最佳制备条件:反应温度55℃,催化剂用量为废油质量的2%,反应5h,在此条件下,酯化率达85.11%。  相似文献   

19.
采用部分还原法制备Fe_3O_4磁性纳米颗粒(MNP),通过反相微乳液法在磁性Fe_3O_4纳米颗粒表面包覆SiO_2且其表面由叠氮(-N3)基团进行修饰,制备了一种新Fe_3O_4@SiO_2@N3复合材料。TEM和IR对材料形态结构及包覆情况的分析,显示SiO_2包覆在Fe_3O_4表面,形成尺寸约为50 nm,硅球结构清晰较为均匀,单分散性好的复合结构。其与3-叠氮丙基三乙氧基硅烷接枝叠氮基团,形成尺寸为70 nm左右的三层复合结构。该复合材料具有良好的分散性,可作为合成磁性纳米应用材料的中间体。  相似文献   

20.
制备了Fe_3O_4@BSA磁性纳米功能材料,包裹在Fe_3O_4纳米粒子表面的牛血清白蛋白(BSA)主要起到分散剂和稳定剂的作用。通过傅里叶变换红外光谱、X射线衍射、透射电子显微镜及热重分析对合成的Fe_3O_4@BSA纳米粒子进行了表征和分析。结果表明,制备的Fe_3O_4@BSA纳米粒子中BSA质量分数约为18.9%。体外成像结果表明,随着Fe_3O_4@BSA纳米粒子浓度的增加,T2成像信号增强,具有明显的阴性造影效果。于0.5 T外磁场下,测得Fe_3O_4@BSA纳米粒子的横向弛豫率(transverse relaxivity,r2)为148.18 L/(mmol·s)。结果表明,Fe_3O_4@BSA纳米粒子能够作为一种潜在的T2类磁共振成像造影剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号