首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用固相烧结法制备了Bi_(1.5-x)Ba_xZnNb_(1.5)O_7(x=0.05,0.10,0.15,0.20,物质的量比)陶瓷,研究了钡掺杂量x对陶瓷烧结性能、结构和介电性能的影响。结果表明:掺杂钡后陶瓷的烧结温度从1 050℃降至960℃,其物相均为单一焦绿石相,且其衍射峰随钡掺杂量的增加向小角度方向偏移;陶瓷的介电常数和介电损耗随钡掺杂量的增加而增大;不同频率下,不同钡掺杂量陶瓷在低温区域均出现介电弛豫现象;介电弛豫峰随钡掺杂量的增加逐渐宽化和平坦化,且向高温方向移动;随着钡掺杂量的增加,陶瓷的弛豫程度先减小后增大,弛豫激活能和温度系数先增大后减小。  相似文献   

2.
采用共沉淀法分别制备Al_2O_3和TiO_2前驱体包覆MgO颗粒,并在1 450℃保温2h得到MgO基陶瓷,研究了Al_2O_3和TiO_2添加量对陶瓷物相组成、烧结性能和抗热震性能的影响.结果表明:添加Al_2O_3后,陶瓷的主要物相为方镁石相和MgAl_2O_4相,随Al_2O_3添加量的增加,MgAl_2O_4相含量增多,线收缩率和热震次数均先增后降,体积密度则增大;添加TiO_2后,陶瓷的主要物相为方镁石相、Mg_2TiO_4相和MgTiO_3相,随TiO_2添加量的增加,Mg_2TiO_4和MgTiO_3相含量增多,线收缩率和体积密度均先增后降,热震次数则先增加后保持稳定;当Al_2O_3和TiO_2的质量分数分别为6%,4%时,陶瓷的烧结性能和抗热震性能均最佳.  相似文献   

3.
以YOF∶Eu~(3+)纳米粉体为原料、BaF_2为烧结助剂,经干压成型后在空气气氛下烧结制备了Y2O_3∶Eu~(3+)透明陶瓷,研究了烧结助剂BaF_2添加量(0~2.0%,质量分数)对陶瓷显微结构和发光性能的影响。结果表明:随着烧结助剂BaF_2添加量的增加,所制备陶瓷的气孔率先降后增,透光率先增后降,当烧结助剂BaF_2质量分数为1.0%时,陶瓷的气孔率最低、透光率最高;随着烧结助剂BaF_2添加量的增加,陶瓷激发光谱中Eu-O电荷迁移态的峰值位置从波长252nm处移到波长242nm处,激发光谱中波长414nm与397nm对应的激发峰强度之比先增后降,当烧结助剂BaF_2质量分数为1.0%时达到最大;陶瓷的发光强度先弱后强,当烧结助剂BaF_2质量分数为1.0%时最弱。  相似文献   

4.
通过在SnO2陶瓷压敏电阻中共同掺杂Sb2O5和Y2O3(0.05%,物质的量分数),采用扫描电镜和阻抗仪研究了Sb2O5掺杂量(0,0.05%,0.10%,0.15%,物质的量分数)对SnO2压敏电阻微观形貌、电压梯度和晶粒电阻的影响.结果表明:随Sb2O5掺杂量增加,SnO2压敏电阻的晶粒尺寸和界面态密度先增大后减小,电压梯度、非线性系数和泄漏电流密度先减小后增大;Sb2O5掺杂量为0.10%时,SnO2压敏电阻的界面态密度最大,泄漏电流密度最小,晶粒电阻最小,综合电性能最好.  相似文献   

5.
通过直接添加与原位生成两种方式引入Y_2O_3作为烧结助剂,热压烧结制备了AlN陶瓷;研究了添加方式及添加量对AlN陶瓷显微结构和力学性能的影响。结果表明:原位生成烧结助剂的方式更有利于AlN陶瓷的致密化,特别是当原位生成的Y_2O_3质量分数为2%时,AlN陶瓷的相对密度达到99.0%,硬度为15.39GPa,抗弯强度为383.0MPa,均高于直接添加Y_2O_3的;同时可获得晶形完整、第二相含量少且大部分位于三叉晶界、晶粒间面-面接触的显微结构;随着原位生成烧结助剂添加量的增多,陶瓷的相对密度下降,在AlN晶界处出现大量第二相而导致陶瓷的硬度、抗弯强度等力学性能也下降。  相似文献   

6.
以AlN和Al2O3为原料、Y2O3为烧结助剂,在氮气气氛下无压反应烧结制备了AlON-AlN复相陶瓷;用XRD及SEM等方法对复相陶瓷的物相组成和显微结构进行了表征;研究了烧结温度、Al2O3及Y2O3加入量对复相陶瓷的烧结性能、力学性能和热导率的影响.结果表明:在1 650~1 800℃范围内反应烧结可以得到AjON-AlN复相陶瓷;其抗弯强度和热导率均随着烧结温度的升高先增大后减小,分别在1 750℃与1 700℃时达到最大值(378MPa,38 W·m-1·K-1);随着Al2O3加入量的增加,复相陶瓷的抗弯强度先增大后减小,当Al2O3加入量为30%时达到最大值,其热导率则随着Al2O3加入量的增加呈明显下降趋势;随着Y2O3加入量的增加,抗弯强度不断增大,而热导率则先增大后减小,在Y2O3加入量为3%时达到最大值41 W·m-1·K-1.  相似文献   

7.
以AlN和Al2O3为原料、Y2O3为烧结助剂,在氮气气氛下无压反应烧结制备了AlON-AlN复相陶瓷;用XRD及SEM等方法对复相陶瓷的物相组成和显微结构进行了表征;研究了烧结温度、Al2O3及Y2O3加入量对复相陶瓷的烧结性能、力学性能和热导率的影响。结果表明:在1 650~1 800℃范围内反应烧结可以得到AlON-AlN复相陶瓷;其抗弯强度和热导率均随着烧结温度的升高先增大后减小,分别在1 750℃与1 700℃时达到最大值(378 MPa,38 W.m-1.K-1);随着Al2O3加入量的增加,复相陶瓷的抗弯强度先增大后减小,当Al2O3加入量为30%时达到最大值,其热导率则随着Al2O3加入量的增加呈明显下降趋势;随着Y2O3加入量的增加,抗弯强度不断增大,而热导率则先增大后减小,在Y2O3加入量为3%时达到最大值41 W.m-1.K-1。  相似文献   

8.
研究碳纳米管添加对Al_2O_3基机械陶瓷材料组织和性能的影响,并讨论热压烧结对复合材料力学性能的影响。结果表明,添加碳纳米管后,氧化铝基复合材料断面存在碳纳米管末梢。随着碳纳米管含量的增加,碳纳米管/Al_2O_3复合陶瓷材料抗拉强度先增加后减小,碳纳米管体积含量2%时达到最大值;随着碳纳米管含量的增加,复合材料维氏硬度降低,断裂韧性先增加后减小;碳纳米管/Al_2O_3复合陶瓷材料抗拉强度随着烧结温度先增加后减小,烧结温度165℃时达到最大值941MPa。  相似文献   

9.
采用溶胶-凝胶与热压相结合的方法制备了镍掺杂Ca_3Co_4O_(9+δ)基热电陶瓷,研究了镍掺杂量对其显微结构和电输运性能的影响。结果表明:随着镍掺杂量的增加,Ca_3Co_4O_(9+δ)基陶瓷的晶粒尺寸减小、织构含量降低、取向度下降;镍掺杂后使陶瓷晶界散射增强,导致电阻率和泽贝克系数增大,而功率因子降低,说明镍掺杂降低了该陶瓷的电输运性能。  相似文献   

10.
以纳米MgO粉和ZrO_2纤维为原料,以短切碳纤维为添加剂,采用无压烧结工艺制备碳纤维增强MgO-ZrO_2陶瓷,研究了碳纤维添加量对陶瓷烧结性能、物相组成、抗热震性能和显微结构的影响.结果表明:随碳纤维添加量的增加,陶瓷的相对密度和线收缩率降低,显气孔率增大,碳纤维的添加不利于MgO-ZrO_2陶瓷的烧结;抗弯强度随碳纤维添加量的增加先增大后减小,当碳纤维的体积分数为20%时,陶瓷的抗弯强度最大,为287.15 MPa;碳纤维的添加能提高MgO-ZrO_2陶瓷的抗热震性能,当碳纤维体积分数为15%时,陶瓷的抗热震性能最佳.  相似文献   

11.
采用球磨法制备Na_2O质量分数分别为12.31%,9.31%,7.31%的Na_2O-SiO_2-Al_2O_3-B_2O_3系陶瓷结合剂,研究了Na_2O含量对烧结前后陶瓷结合剂的物相组成、力学性能、热膨胀系数,以及对陶瓷结合金刚石砂轮抗弯强度的影响。结果表明:较高的Na_2O含量有利于抑制石英相的析出;随着Na_2O含量的增加,烧结后陶瓷结合剂的硬度和抗弯强度降低,热膨胀系数在较低温度(620~640℃)烧结后增大,在较高温度(660~680℃)烧结后先增后降;当Na_2O的质量分数为9.31%、烧结温度为680℃时,所得陶瓷结合金刚石砂轮的抗弯强度最大,为53.5 MPa;3种陶瓷结合剂制备得到的金刚石砂轮具有相似的微观结构。  相似文献   

12.
以α-Si_(3)N_(4)粉为原料,Y_(2)O_(3),Al_(2)O_(3)为烧结助剂,通过控制喷雾干燥塔进口温度、喷片孔径制备不同松装密度的造粒粉体,采用气压烧结工艺制备Si_(3)N_(4)陶瓷球,研究造粒粉体松装密度对Si_(3)N_(4)陶瓷球烧结致密化的影响。结果表明:随造粒粉体松装密度的增大,Si_(3)N_(4)陶瓷球致密化程度先增大后减小;当松装密度为0.89 g/cm^(3)时,Si_(3)N_(4)陶瓷球显微气孔最少,致密化水平最好,致密化程度最高,力学性能最优,其抗弯强度为995 MPa,压碎载荷比为67%,断裂韧性为6.41 MPa·m^(1/2),维氏硬度为1505 HV_(10)。  相似文献   

13.
研究陶瓷与6061铝合金烧结封接工艺及其结合机制。将Al_2O_3陶瓷进行表面化学镀镍,再与6061铝合金进行烧结封接,在不同烧结温度下观察Al_2O_3(N)陶瓷/6061铝合金接头微观形貌,并选取在590℃、1 h下获得的接头进行EDS分析,测定不同温度下烧结Al_2O_3(N)陶瓷/6061铝合金接头强度。研究表明,所制Al_2O_3陶瓷表面化学镀镍层均匀致密,铝合金中元素扩散至化学镀镍层,自铝合金一侧至陶瓷一侧,Al元素含量整体上呈先减小后增大的趋势;随着烧结温度的升高,接头强度也随之升高,最大可达15.4 MPa。  相似文献   

14.
采用传统熔体冷却法制备了Li_2O掺杂量(质量分数)为0~3.0%的SiO_2-Al_2O_3-MgO玻璃,探讨了Li_2O掺杂量对玻璃热稳定性、结构稳定性以及力学性能的影响。结果表明:掺杂Li_2O能有效降低玻璃的软化温度;随着Li_2O掺杂量的增加,玻璃的光学带隙先减小后增大,结构稳定性、热稳定性、力学性能先增强后减弱,当Li_2O掺杂量为1.0%时,玻璃的结构最稳定、弯曲和压缩性能最优。  相似文献   

15.
采用传统的二次球磨固相反应法制备了Bi2(Zn1/3 Nb2/3-x)O7(M为Sn,Zr,Ti)陶瓷,并使用X射线衍射仪、扫描电镜、介电性能测试仪等研究了Sn4+,Zr4+,Ti4+的B位替代对陶瓷烧结温度、物相、显微形貌以及介电性能的影响.结果表明:当替代量x≤0.25时,所得陶瓷均保持单一的单斜焦绿石相结构;Zr4+,Ti4+什替代的陶瓷达到最致密的烧结温度与未经替代的一致,而Sn4+替代的陶瓷在1 020℃烧结才可以达到最致密;用Ti4+,Zr4+替代的陶瓷晶粒尺寸与基体的相当,而Sn4+替代的陶瓷晶粒尺寸大小不一;Sn4+,Zr4+替代的陶瓷介电常数温度系数随着替代量的增加逐渐减小,Sn4+替代的陶瓷在x=0.25时为负值,Ti4+替代的陶瓷介电常数温度系数随着替代量的增加先增大后减小,但始终为正值.  相似文献   

16.
过量Bi2O3对熔盐法制备钛酸铋的影响   总被引:1,自引:0,他引:1  
采用NaCl-KCl熔盐法制备了各向异性的片状Bi4Ti3O12粉体,研究了过多Bi2O3对粉体尺寸、形貌以及陶瓷的显微组织和介电性能的影响。结果表明:Bi2O3过量对Bi4Ti3O12的相结构无影响,随过量Bi2O3的增加,Bi4Ti3O12粉体的尺寸及各向异性的程度均有所增大;烧结后的Bi4Ti3O12陶瓷晶粒呈片状,且随Bi2O3含量的增加,钛酸铋陶瓷密度和介电常数先增加后降低,绝缘电阻率随之逐渐减小,介电损耗显著增大。  相似文献   

17.
采用溶胶-凝胶法在Si(100)基底上制备Ca_(0.925)Sm_(0.05)Cu_(3-y)Mg_yTi_4O_(12)(y=0,0.05,0.10,0.15,0.20,物质的量分数/%,下同)薄膜,研究了镁掺杂量对薄膜物相组成、微观形貌以及介电和压敏性能的影响。结果表明:不同镁掺杂量薄膜均主要由多晶CaCu_3Ti_4O_(12)相以及少量SiC和CaTiO_3相组成;随着镁掺杂量的增加,薄膜的晶粒尺寸和相对介电常数增大;当镁掺杂量为0.10%时,薄膜的致密性能最好,在低频下的介电损耗最小;不同镁掺杂量薄膜的电流密度和电场强度均为非线性关系,当镁掺杂量为0.10%时的非线性系数最大,漏电流较小。  相似文献   

18.
以MgSiN_2、Y_2O_3和Yb_2O_3为添加剂,通过1 800℃热压烧结制备Si_3N_4陶瓷,研究显微结构对Si_3N_4力学性能和热导率的影响。结果表明,不同烧结助剂制备的Si_3N_4的相对密度均在99%以上。分别添加MgSiN_2、Y_2O_3和Yb_2O_3的Si_3N_4样品,晶粒尺寸依次降低,并且断裂韧性、抗弯强度和热导率均依次降低。高长径比的长棒状β-Si_3N_4晶粒能增加Si_3N_4材料的抗弯强度和断裂韧性。采用MgSiN_2作为烧结助剂促进Si_3N_4晶粒生长,Si_3N_4的热导率较高。以MgSiN_2作为添加剂的Si_3N_4具有较好的性能,其热导率、抗弯强度和断裂韧性分别为64.37 W·m~(-1)·K~(-1)、840 MPa和6.96 MPa·m~(1/2),满足绝缘散热基板的需求。  相似文献   

19.
利用放电等离子烧结技术,在温度1 400℃、压力15 MPa条件下烧结5min制备了氧化钇稳定的四方多晶氧化锆陶瓷(Y-TZP),研究了原料粉体的粒径(301.9~444.8nm)对该陶瓷晶粒尺寸和断裂韧性的影响。结果表明:随着粉体粒径的减小,Y-TZP陶瓷的晶粒尺寸逐渐增大,应力诱导相变量增加,断裂韧性增大;当粉体粒径为301.9nm时,应力诱导相变量和断裂韧度均达到最大,分别为16.18%(体积分数)和7.06 MPa·m~(1/2)。  相似文献   

20.
采用传统熔体冷却法制备添加不同质量分数(0~3.0%)Bi_2O_3的SiO_2-Al_2O_3-MgO系玻璃,研究Bi_2O_3添加量对玻璃热稳定性、结构稳定性以及物理与力学性能的影响。结果表明:添加Bi_2O_3可有效降低玻璃的软化点;随着Bi_2O_3添加量的增加,玻璃析晶温度与玻璃化转变温度之差先增大后减小,光学带隙先减小后增大,说明玻璃的热稳定性和结构稳定性先提高后降低,同时玻璃的密度、弯曲强度、压缩强度和压缩模量也呈先增大后降低的趋势;当Bi2O3的质量分数为1.5%时,玻璃的结构稳定性、热稳定性、物理与力学性能最优异,此时玻璃析晶温度与玻璃化转变温度之差为244K,光学带隙为3.50eV,密度为2.67g·cm~(-3),弯曲强度为82.72 MPa,压缩强度为236.24MPa,压缩模量为110.06GPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号