首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
李顺新  黄新露  陈光  李扬  吴子明 《现代化工》2020,(4):204-207+211
以高芳烃含量的劣质催化裂化柴油为原料进行加氢转化工艺研究,考察体系压力、裂化温度、精制深度以及操作方式对催化柴油加氢转化工艺的影响。结果表明,随体系压力增加轻、重石脑油收率明显增加而转化柴油相应降低;随裂化温度增加汽油馏分明显增加且辛烷值有所提高,柴油馏分十六烷值呈先增加后降低的趋势;当控制精制油氮含量为35μg/g时,加氢转化工艺得到的产品质量最佳,汽油馏分研究法辛烷值达90以上,为优质的清洁高辛烷值汽油调和组分;从产品质量方面考虑部分循环操作方式最佳,可得到辛烷值超过90的汽油组分与十六烷值在45左右的清洁柴油馏分,加氢转化工艺是劣质催化裂化柴油高附加利用的优质路线。  相似文献   

2.
研究开发出了适于FCC汽油加氢改质的选择性加氢脱硫催化剂和辛烷值恢复催化剂,并在300 mL绝热装置上,分别以全馏分FCC汽油或切割后的重馏分FCC汽油为原料,进行了FCC汽油加氢改质工艺的系统研究,结果表明:单独采用辛烷值恢复工艺或辛烷值恢复-选择性加氢脱硫组合工艺不能完全满足FCC汽油加氢改质的要求;而单独采用选择性加氢脱硫工艺或选择性加氢脱硫-辛烷值恢复组合工艺可以满足全馏分FCC汽油或切割后重馏分FCC汽油加氢改质的要求。将全馏分FCC汽油切割后进行加氢改质可以得到硫含量更低的改质产品或直接生产符合国Ⅳ标准的清洁汽油。  相似文献   

3.
李家荣 《辽宁化工》2020,49(6):669-671,692
以FH-98/3963催化剂对重催柴油和裂解柴油的混和柴油进行加氢改质,改质后柴油收率高,十六烷值有较大提高,硫、芳烃、密度有较大幅度的下降,凝点不回升,是成品柴油的良好调和组分,改质汽油芳潜高,是优质重整料。  相似文献   

4.
采用加氢预精制催化剂、加氢精制催化剂、加氢裂化催化剂以及加氢饱和催化剂适宜的级配方式对高温煤焦油馏分油进行二段加氢改质,结果表明,高温煤焦油馏分油的性质经加氢改质后得到大幅度改善,密度由1 169.7kg/m3降低到900.9kg/m3以下,氢碳原子比由0.79提高到1.63以上,残炭降低到0.02%(质量分数);其石脑油馏分的硫、氮含量分别小于5μg/g和1μg/g,芳烃潜含量大于68%(质量分数),是催化重整的优质原料;其柴油馏分的硫含量很低,凝点和冷滤点均小于-30℃,十六烷值大于39,是国Ⅳ低凝柴油的优质调和组分;而加氢尾油基本由芳烃组成,不宜作为催化裂化的原料.  相似文献   

5.
采用RGC-1/RNC-2/RCC-1催化剂组合,以煤直接液化油品为原料,在100万t/a加氢改质装置上进行加氢改质研究。结果表明,煤直接液化油的性质得到明显改善,绝大部分不饱和烃加氢饱和,加氢精制段对改善油品质量起主要作用,原料油中的S、N、O等几乎全部脱除;其柴油馏分S、N含量很低,凝点和冷滤点均低于-27℃,十六烷值约43,是国Ⅴ低凝点柴油的优质调和组分;石脑油馏分的S、N含量均小于1μg/g,芳潜含量高达68.8%,是优质的催化重整原料。  相似文献   

6.
高硫FCC汽油加氢脱硫降烯烃DSRA技术开发   总被引:1,自引:1,他引:0  
在分析催化裂化汽油硫和烯烃分布不均匀的基础上,对催化裂化汽油进行轻、重组分分馏,开发了活性高和稳定性好的重馏分辛烷值恢复催化剂及FCC汽油加氢脱硫降烯烃DSRA技术。采用DSRA技术对高硫格尔木催化裂化汽油进行轻馏分脱硫醇、重馏分加氢脱硫和辛烷值恢复等改质处理,总脱硫率为94.1%,烯烃降至20%,辛烷值不损失,汽油收率97.83%,化学氢耗0.88%,可生产符合欧Ⅲ规范的清洁汽油。  相似文献   

7.
针对催化裂化汽油加氢脱硫降烯烃组合工艺技术中,芳构化降烯烃改质催化剂M应用于重馏分汽油加氢时,存在因反应温度高而影响催化剂长周期运行及液体总收率等问题,对催化剂进行优化升级改进研究。结果表明,在M催化剂基础上,通过对HZSM-5分子筛原料改进及调变活性金属组分,研制出活性高和稳定性好的催化裂化重汽油芳构化降烯烃改质催化剂M-Ⅱ,与M催化剂相比,烯烃降低幅度相当时,芳烃增加1.5个百分点,研究法辛烷值提高0.8个单位。  相似文献   

8.
催化裂化柴油硫含量高,芳烃含量高,十六烷值低,是较为劣质的柴油组分。通过加氢方法一般可以实现催化裂化柴油的大幅改质,但芳烃加氢饱和对提高中间馏分油的十六烷值有限。催化裂化柴油已成为限制企业柴油质量升级的关键。针对国内外车用柴油质量升级趋势,以劣质催化裂化柴油高值化和清洁化利用为出发点,综述劣质催化裂化柴油综合利用技术的研究进展,分析劣质催化裂化柴油加氢改质后调和柴油的劣势,重点介绍由劣质催化裂化柴油生产低碳芳烃或高辛烷值汽油的工艺技术,提出利用催化裂化柴油富含芳烃的特点,加氢后生产高辛烷值汽油或轻质芳烃是最具竞争力的加工路线。下一步的工作重点是进一步提高现有技术芳烃加氢饱和与侧链断裂选择性,提高低碳芳烃产率,减少低值副产物,使经济效益最大化。  相似文献   

9.
针对中海油高氮环烷基催化裂化柴油加氢裂化工艺,将改性Beta分子筛与Y分子筛按不同比例复配作为酸性组分制备载体,通过等体积浸渍法负载Ni-Mo活性金属制备柴油加氢裂化催化剂。采用BET、XRD、NH3-TPD、FT-IR等方法对其进行分析表征,在固定床反应器上考察两种分子筛复配对催化剂加氢裂化性能的影响。结果表明,在反应压力10.0 MPa、空速0.8 h-1、氢油体积比为800∶1、预处理反应温度350℃、控制>205℃馏分转化率为50%的条件下,可生产38.6%~42.5%的汽油馏分,作为高辛烷值汽油调和组分或生产BTX的原料,柴油馏分十六烷值至少提高17.0。在CAT-BY2催化剂作用下,汽油馏分收率为42.5%,其中BTX含量为21.8%,研究法辛烷值为93.5。  相似文献   

10.
分析对比了煤直接液化油的汽油和柴油馏分与石油基汽油和柴油馏分杂原子含量和族组分的差异,指出煤直接液化油中氮和芳烃含量高,需要经过苛刻的加工改质,才能作为车用内燃机燃料使用。介绍了煤液化粗油提质加工的研究现状,讨论了油品加氢催化剂和不同馏分产物的加氢提质工艺,展望了该工艺的发展趋势。  相似文献   

11.
孙斌  葛海龙  韩照明 《当代化工》2016,(12):2909-2912
目前我国炼油市场柴汽比下降、环保法规日趋严格,催化柴油(LCO)油品价值降低,炼油企业急需调整产品结构,为其寻找新的出路。而国内面临着高辛烷值汽油短缺的情况,因此将催化柴油转化为高辛烷值汽油是一条降低柴汽比、增产汽油的有效途径。结合催化柴油的性质从反应机理、试验数据及工业应用等方面介绍了FD2G加氢转化技术。结果表明:FD2G加氢转化技术可将催化柴油加氢转化为高辛烷值汽油和清洁柴油调和组分,同时可生产轻质芳烃原料等高附加值产品。  相似文献   

12.
To solve the contradiction between ultradeep hydrodesulfurization (HDS) and octane recovery in clean gasoline production, this article proposes a novel two‐stage fluid catalytic cracking (FCC) gasoline hydro‐upgrading process with the selective HDS catalyst in the first reactor and the complemental HDS and octane recovery catalyst in the second reactor. The process achieved the relayed removal of sulfur‐containing compounds with different natures, providing itself with excellent HDS performance, and the hydroisomerization and aromatization of olefins in the second stage endowed the process with superior octane recovery ability and high product yield while remarkably reducing the olefin content of FCC gasoline. The process was also featured by low hydrogen consumption due to the low first‐stage olefin saturation and the balanced second‐stage hydrogenation and dehydrogenation. The two‐stage process developed here sheds a light for efficiently producing ultralow sulfur gasoline from the poor‐quality FCC gasoline of high olefin and sulfur contents. © 2012 American Institute of Chemical Engineers AIChE J, 59: 571–581, 2013  相似文献   

13.
介绍了PHF-101型柴油加氢精制催化剂在中国石油乌鲁木齐石化分公司2.0 Mt·a~(-1)柴油加氢装置的工业应用情况,结果表明,在反应器入口压力7.83 MPa、空速1.84 h~(-1)、平均温度358℃和氢油体积比476∶1条件下,加工硫含量1 835μg·g~(-1)的混合汽油和柴油原料,精制柴油硫含量4.8μg·g~(-1),十六烷值提高4.0个单位。PHF-101型催化剂加氢性能优良,运转稳定性良好,满足国Ⅳ和国Ⅴ柴油生产需求。  相似文献   

14.
主要介绍了载体的种类及性能对FCC汽油加氢脱硫效果的影响。指出在制备FCC汽油加氢脱硫催化剂时,应选择具有适当酸碱度的物质作为载体,保证催化剂具有较高的加氢脱硫/加氢选择性,从而使脱硫后的FCC汽油满足低硫含量高辛烷值的要求。  相似文献   

15.
闫锦涛  李兴彪 《辽宁化工》2010,39(7):700-704
加氢脱硫降烯烃技术在FCC汽油加氢脱硫及烯烃饱和的同时,很好地减少汽油辛烷值损失问题。介绍了采用HDDO-01催化剂与HDDO-02催化剂组合工艺,对催化裂化汽油进行加氢处理,w(硫)〈50μg/g,汽油辛烷值损失〈2。  相似文献   

16.
LTAG技术的应用一方面催化柴油可以通过加氢后去催化裂化装置回炼,将催化柴油转化为汽油及液化气组分,减少了企业低十六烷值柴油组分,同时降低柴汽比;另一方面可大幅提高催化汽油辛烷值,同时降低烯烃含量,满足汽油质量升级的要求。本文以C企业采用催化柴油LTAG技术的应用实践为例,分析了该技术对企业结构调整的影响。  相似文献   

17.
为了提高重苯加氢装置的稳定性,延长装置的使用周期,山东德润化工有限公司重苯加氢采用三段处理工艺,并使用配套的W系列重油加氢催化剂。工业应用结果表明,三段组合工艺可以很好的控制反应热,W系列催化剂具有较高的加氢活性,将硫、氮脱除到10μg·g^(-1)以下,可用于生产符合国家标准的汽柴油调和组分。  相似文献   

18.
以环烷基原油生产的直馏柴油、催化柴油与焦化汽柴油的混合馏分油为原料,在200 mL串联固定床加氢装置上进行加氢改质试验,重点考察劣质含酸高氮馏分油加氢改质后能否满足GB 19147-2009车用柴油质量要求.结果表明,混合馏分油氮含量高,十六烷值低,采用目前传统的加氢精制技术与加氢改质技术进行加氢处理,柴油产品难以满足...  相似文献   

19.
针对以FCC汽油为原料生产国Ⅴ标准汽油带来的辛烷值损失过大的问题,开发出一种硫转移组合催化剂,可减少辛烷值损失,同时降低硫含量至小于10μg·g~(-1)。研究反应温度、反应压力、空速及不同催化剂组合方案对脱硫和辛烷值损失的影响,并进行100 h的稳定性实验。结果表明,在反应温度150℃、反应压力2.0 MPa和空速3 h~(-1)条件下,催化剂A在上层、B在下层的组合方式的催化剂硫转移能力较好,稳定性良好。  相似文献   

20.
为了降低FCC汽油中的硫含量和烯烃含量并适当提高其辛烷值,国内某炼厂引进了美国CDTECH公司的选择性加氢脱硫技术。其中以贵金属钯为活性中心的加氢催化剂对催化汽油中的砷化物含量有严格要求,其质量分数应小于10×10^-9,而目前国内没有催化汽油脱砷应用的先例。对FCC汽油原料脱砷技术进行了研究。结果表明,X脱砷剂在常温下脱砷可满足原料指标要求,操作费用低,寿命长,对催化汽油其它性质没有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号