首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用淬火膨胀仪、光学显微镜、维氏硬度计等研究了完全奥氏体化46MnVS6非调质钢经不同冷却速率冷却至室温后的显微组织和显微硬度,测定了其过冷奥氏体连续冷却转变(CCT)曲线,探讨了合金元素及冷却速率对过冷奥氏体连续冷却相变的影响。结果表明:46MnVS6钢的CCT曲线可分为高温转变区域、中温转变区域和低温转变区域,且中、低温转变区域互相分离;当冷却速率小于2℃·s~(-1)时,组织主要为铁素体和珠光体,随着冷却速率的增大,铁素体和珠光体含量减少,平均晶粒尺寸减小,马氏体含量增加,当冷却速率大于5℃·s~(-1)时,组织主要为马氏体;随着冷却速率从0.5℃·s~(-1)增大至60℃·s~(-1),46MnVS6钢的显微硬度由285HV1增至683HV1。  相似文献   

2.
通过Gleeble-3800型热模拟试验机测出含铜低碳硅锰钢在不同冷却速率(1~150℃·s~(-1))下连续冷却的热膨胀曲线,绘制出该钢的连续冷却转变(CCT)曲线;结合金相观察及显微硬度测试分析了冷却速率对相变组织及硬度的影响。结果表明:冷却速率在1~5℃·s~(-1)时,显微组织主要为铁素体+珠光体;当冷速为10℃·s~(-1)时组织中出现马氏体,随着冷速增大,马氏体含量增多,珠光体发生退化并逐渐减少,铁素体总量减少,其中针状铁素体增加而多边形铁素体减少并消失;冷却速率超过120℃·s~(-1)后,针状铁素体基本消失,显微组织为马氏体+少量残余奥氏体;试验钢显微硬度随冷却速率的增大而增加。  相似文献   

3.
采用热力学计算软件和X射线衍射分析方法对高纯净SAE9310钢奥氏体化后平衡组织的转变规律进行了研究;采用膨胀法和金相法在Formastor-FⅡ型膨胀仪上测定了该钢的连续冷却转变曲线(CCT曲线)。结果表明:SAE9310钢的平衡转变组织为α-Fe、γ-Fe以及M_(23)C_6和M_7C_3碳化物;在连续冷却转变过程中,当冷却速率小于0.056℃·s~(-1)时,转变产物为粒状贝氏体和铁素体组织;当冷却速率介于0.056~1.9℃·s~(-1)时,转变产物为粒状贝氏体和少量马氏体组织;当冷却速率大于1.9℃·s~(-1)后,粒状贝氏体逐渐消失,转变产物主要为板条马氏体和少量残余奥氏体组织;钢的硬度随着冷却速率的增加而逐渐提高。  相似文献   

4.
利用Gleeble-3500型热模拟试验机对Q1100高强钢的焊接过程进行模拟,采用热膨胀法结合显微组织与硬度测试,绘制了该钢的模拟热影响区连续冷却转变曲线(SHCCT曲线),研究了不同冷却速率下焊接热影响区粗晶区的组织转变特征和硬度变化规律。结果表明:在模拟焊接条件下,该钢的奥氏体化温度明显高于平衡状态下的奥氏体化温度;当冷却速率低于2℃·s~(-1)时,热影响区粗晶区为全贝氏体组织;当冷却速率为2~12℃·s~(-1)时,热影响区粗晶区为贝氏体和马氏体的混合组织;当冷却速率超过12℃·s~(-1)时,热影响区粗晶区得到全马氏体组织;随着冷却速率增加,焊接热影响区粗晶区的硬度逐渐增大。  相似文献   

5.
采用DIL805L型膨胀仪测得了钻头用15CrNiMn钢的奥氏体连续冷却转变(CCT)曲线,研究了试验钢在不同冷却速率下的相变过程、显微组织和硬度。结果表明:试验钢在很宽的冷速范围内均出现贝氏体组织,铁素体、珠光体转变区和贝氏体转变区完全分离;随着冷却速率增加,试验钢的室温组织逐渐细化,硬度明显增大。  相似文献   

6.
通过热膨胀试验、显微组织观察等研究了DP590钢的静态CCT曲线以及加热温度对连续冷却相变规律的影响。结果表明:随着加热温度的升高,奥氏体转变量呈多速增加的趋势;其静态CCT曲线可分为三个区域,冷速在0.5~15℃·s-1范围内获得铁素体和珠光体组织,冷速超过15℃·s-1时出现贝氏体组织,冷速较高时(约30℃·s-1)出现马氏体组织;当加热温度降低时,珠光体区右移,贝氏体转变孕育期延长,马氏体开始转变温度降低,马氏体与贝氏体相变区域分离,马氏体开始转变温度随着冷速的增加而升高;随着冷速增加,铁素体、珠光体的析出被抑制,马氏体析出动力得以增加;随着加热温度升高,相同冷却速率下的铁素体含量增多,马氏体板条变细。  相似文献   

7.
利用Gleeble1500D型热模拟试验机测定了新型高钒高速钢在1 000 ℃奥氏体化后以不同冷却速率冷却时的相变膨胀曲线,并用Origin软件绘制了该钢的连续冷却转变(CCT)曲线.结果表明:高钒高速钢在连续冷却过程中存在珠光体、贝氏体和马氏体转变;当冷却速率在0.25 ℃/s时,能获得珠光体、贝氏体、马氏体与奥氏体的混合组织;马氏体开始转变的临界冷却速率约为0.5 ℃/s,其开始转变点Ms低于200 ℃,且随着冷却速率的增大而降低.  相似文献   

8.
U75V钢的连续冷却相变行为   总被引:2,自引:0,他引:2  
利用膨胀法结合金相分析在热模拟试验机上测定了U75V钢不同冷却速率下的连续冷却转变膨胀曲线,获得了该钢的连续冷却转变曲线(CCT曲线);研究了冷却速率对钢组织及硬度的影响.结果表明:当冷速小于10℃·S-1时,转变产物主要以珠光体为主;当冷速增大到10℃·S-1时,得到屈氏体组织和马氏体组织;当冷速增大到10℃·S-1以上时,得到马氏体组织;试验钢的硬度随冷却速率的增加而增大.  相似文献   

9.
利用膨胀法在Gleeble-3500热模拟机上测定了LGB38Mn V钢的相变点,并绘制了连续冷却转变(CCT)曲线,确定了各转变组织的转变温度和临界冷却速度。结果表明,LGB38MnV钢在高温区和小的冷却速度下形成铁素体+珠光体,在中温和相对较大一些的冷却速度下形成贝氏体,在低温和快速冷却时形成马氏体,珠光体和马氏体的临界冷却速度分别为1°C·s~(-1)和3°C·s~(-1).  相似文献   

10.
利用Gleeble-3500型热/力模拟试验机测定了700 MPa级低碳微合金钢的连续冷却相变(CCT)曲线,分析了冷却速率对该钢连续冷却相变及显微组织的影响,研究了该钢的强韧性。结果表明:该钢CCT曲线呈现扁平状,可在较大冷速范围内获得低碳贝氏体组织;冷却速率对试验钢各相的形态、数量、分布和显微硬度均有影响;随着冷却速率的提高,显微组织中依次出现多边形铁素体(PF)、针状铁素体(AF)、粒状贝氏体(GB)和板条贝氏体(LB),且各相的显微硬度也依次增加;当冷速在10~30℃·s-1范围时,显微组织主要为板条贝氏体组织,M/A组元弥散分布于晶界上,且晶粒随着冷却速率的增加而逐渐细化;利用冷却制度控制中温转变组织类型能优化其综合力学性能。  相似文献   

11.
采用热膨胀仪研究了耐硫化氢腐蚀X80管线钢在连续冷却过程中的相变行为,绘制了其连续冷却转变曲线(CCT曲线);并且利用热模拟试验机对其轧制工艺进行模拟,研究了变形温度、冷却速率和卷取温度对试验钢组织和硬度的影响,得到了较优化的轧制工艺;最后测试了在优化轧制工艺参数下轧制试验钢的力学性能和抗氢致开裂性能。结果表明:试验钢的相变温度主要发生在450~780℃之间;随着冷却速率增加,相变开始温度下降,并且当冷速为1.76~8.8℃·s~(-1)时可以得到以针状铁素体为主的组织;最佳的轧制工艺参数为变形温度(830±15)℃、冷却速率15℃·s~(-1)、卷取温度为(400±15)℃;在此工艺参数下轧制得到的试验钢具有优良的抗氢致开裂性能,并可以满足API5L标准对X80管线钢强度级别的要求。  相似文献   

12.
利用Gleeble-1500D型热/力模拟试验机,采用热膨胀法测定了不同铌含量低碳含铌微合金钢在不同冷速下的相变点,研究了奥氏体连续冷却时的相变行为及铌含量和冷却速率对该钢相变组织与硬度的影响。结果表明:随着铌含量和冷速的提高,γ→α相变温度降低,相变组织变得复杂,显微硬度升高;铌含量较低(小于0.024%,质量分数)的钢在冷速较低(3℃·s~(-1))时,显微组织为较粗大的铁素体和少量珠光体,冷速提高后主要是由尖角形、多边形铁素体和贝氏体组成的混合组织;铌含量较高(0.06%)的钢在高冷速(50℃·s~(-1))下出现了针状铁素体组织。  相似文献   

13.
在Gleeble-3800热模拟试验机上采用热膨胀法结合硬度测试得到加钼和不加钼两种高强度船板钢变形后的连续冷却转变(CCT)曲线,用光学显微镜、扫描电镜、透射电镜等观察了相应的组织转变特征,研究了钼元素对高强度船板钢CCT曲线及显微组织的影响。结果表明:在高强度船板钢中加入质量分数为0.2%的钼后,扩大了其CCT曲线中的贝氏体转变区,并且使铁素体和珠光体转变区右移;在相同的冷却速率下贝氏体中的M/A岛数量较多,尺寸较大,分布更加均匀弥散。  相似文献   

14.
分析了含钒双相钢中钒的存在状态,测定了其静态CCT曲线,并研究了临界区热处理奥氏体化温度对该钢组织与性能的影响。结果表明:在其他工艺条件相同的情况下,随临界区奥氏体化温度的升高,其马氏体转变的临界冷速增加,热处理后该钢的强度降低;奥氏体化温度从780℃提升到800℃时,马氏体转变的临界冷速增加了5℃·s~(-1),奥氏体化温度780℃热处理后该钢的抗拉强度比820℃的高95MPa;该钢中的钒主要以析出物和在马氏体中以固溶态两种状态存在,钒在钢中起到析出强化、细化晶粒和提高淬进性的作用。  相似文献   

15.
采用膨胀法在Gleeble-3500型热模拟试验机上测定了BM510L钢在不同冷速下连续冷却时的膨胀曲线及连续冷却转变曲线(CCT曲线);利用光学显微镜、显微硬度计研究了BM510L钢连续冷却过程中奥氏体转变后的组织和显微硬度。结果表明:随着冷速的提高,铁素体转变开始温度降低,珠光体转变终了温度也逐渐降低,当冷速大于1℃·s-1时,组织中开始发生贝氏体转变,当冷速为15℃·s-1时,组织已完全转变为贝氏体组织;随着冷速的提高,其显微硬度逐渐增大。  相似文献   

16.
采用Gleeble 3500型热模拟试验机,测定了微铌高钼型H13热作模具钢(%,0.027Nb,2.39Mo)以不同冷却速度冷却时的膨胀曲线,并结合金相法和硬度法绘制了该钢的冷却转变曲线(CCT)。根据测得的CCT曲线,分析了不同冷却速度下连续冷却时的组织转变;阐明了冷却速度与组织演变及硬度变化之间的关系。结果表明:该实验钢临界点为A_(c1)=830℃、A_(c3)=927℃;钢中的Mo、Nb元素显著的提高了钢的淬透性,马氏体转变的临界冷却速度大于1℃/s;为生产实践和新工艺的制定提供了参考依据。  相似文献   

17.
通过热膨胀相变仪得到热膨胀曲线,结合显微组织和硬度测试结果,绘制Si-Mn-MoCr-V低碳贝氏体钢的静态过冷奥氏体连续冷却转变曲线;利用热模拟试验机在奥氏体区对试验钢进行不同变形量的压缩变形,随后冷却到不同温度保温150s再空冷至室温,研究了奥氏体区压缩变形对贝氏体相变和显微组织的影响。结果表明:未经奥氏体区压缩变形、奥氏体区单道次压缩变形40%、奥氏体区两道次压缩变形58%条件下,试验钢贝氏体相变起始温度分别约为400,385,300℃;奥氏体区压缩变形后试验钢在冷却过程中的贝氏体相变延迟,相变起始温度降低,且变形量越大,贝氏体相变的起始温度越低;与未奥氏体区压缩变形试验钢相比,奥氏体区变形后试验钢在冷却过程中形成的贝氏体组织明显细化,晶粒取向增多,且硬度明显升高。  相似文献   

18.
采用Formaster热膨胀仪分别测定了部分奥氏体化与完全奥氏体化冷轧热镀锌Fe-C-Mn-Cr-Nb-Ti系双相钢的CCT曲线,分析了连续冷却过程中的相变规律,从动力学角度分析了部分奥氏体化与完全奥氏体化试验钢CCT曲线的区别.结果表明:在冷速分别为1,3,5℃·S-1时,部分奥氏体化试验钢的铁素体开始转变温度比完全奥氏体化试验钢的分别高36,25,44℃;与完全奥氏体化试验钢相比,部分奥氏体化试验钢的贝氏体转变在向低冷速区推移的同时,也向高冷速区推移,贝氏体转变冷速范围变宽,为1~40℃·S--1;当冷速为1~10℃·S--1时,部分奥氏体化试验钢的贝氏体开始转变温度要低于完全奥氏体化试验钢的,而当冷速为15~20℃·S--1时,情况则相反;为了保证冷轧热镀锌钢的最终淬火组织为铁素体/马氏体双相组织,冷速需大于40℃·S-1.  相似文献   

19.
采用Formaster热膨胀仪分别测定了部分奥氏体化与完全奥氏体化冷轧热镀锌Fe-CMn-Cr-Nb-Ti系双相钢的CCT曲线,分析了连续冷却过程中的相变规律,从动力学角度分析了部分奥氏体化与完全奥氏体化试验钢CCT曲线的区别。结果表明:在冷速分别为1,3,5℃·s-1时,部分奥氏体化试验钢的铁素体开始转变温度比完全奥氏体化试验钢的分别高36,25,44℃;与完全奥氏体化试验钢相比,部分奥氏体化试验钢的贝氏体转变在向低冷速区推移的同时,也向高冷速区推移,贝氏体转变冷速范围变宽,为1~40℃·s-1;当冷速为1~10℃·s-1时,部分奥氏体化试验钢的贝氏体开始转变温度要低于完全奥氏体化试验钢的,而当冷速为15~20℃·s-1时,情况则相反;为了保证冷轧热镀锌钢的最终淬火组织为铁素体/马氏体双相组织,冷速需大于40℃·s-1。  相似文献   

20.
耐候钢形变奥氏体的连续冷却转变行为   总被引:1,自引:0,他引:1  
采用热膨胀法结合硬度测试得到耐候钢未变形和变形奥氏体的连续冷却转变曲线;用光学显微镜和透射电镜分析了冷却速率、变形条件对显微组织的影响.结果表明:变形奥氏体与未变形的相比,铁素体 珠光体相变区向左上方移动,获得铁素体 珠光体的临界冷速增大;变形奥氏体的位错缠结抑制了贝氏体长大,细化了相变后的显微组织;在冷速大于15℃/s时,获得板条状贝氏体,第二相是渗碳体;在冷速5~10℃/s的范围内获得粒状贝氏体,第二相为基体上分布的马氏体/奥氏体岛.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号