首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用酸化法制备了WO_3纳米颗粒,利用丝网印刷技术制作了厚膜型气敏传感器件,并用动态配气法分析了低浓度丙酮气体的气敏响应特性。结果表明:酸化法制备的WO_3纳米颗粒为比表面积约10m~2/g的纳米片状结构,对低浓度的丙酮气体响应较弱。为提升其对丙酮的气敏响应能力,采用浸渍法在WO_3纳米颗粒表面负载了PdO。结果表明:PdO负载后的WO_3对丙酮气敏响应值提高了约5倍,对1.5×10~(-6)的丙酮气体的响应可达3.65,即少量的PdO负载(1.0%)会显著提高WO_3对丙酮的气敏特性。对丙酮气敏响应机理研究表明,表面吸附氧及由PdO表面催化修饰的晶格氧共同影响PdO-WO_3气敏传感器的性能。  相似文献   

2.
采用化学氧化聚合法制备出了不同聚噻吩(PTh)掺杂量的PTh/WO3纳米复合材料进行制备,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)对PTh/WO3纳米复合材料的晶体结构和形貌进行了表征;并研究了PTh/WO3纳米复合材料制备的气敏元件对H2S气体气敏性能。结果表明:PTh/WO3纳米复合材料对H2S气体具有较高的灵敏度,用PTh质量分数为50%的复合材料制成的气敏元件在工作温度为60℃时,对500×10-6的H2S灵敏度达到98,且具有较快的响应与恢复时间。  相似文献   

3.
以FeNO_3·9H_2O、LaNO_3·xH_2O、柠檬酸、丙烯酰胺为原料,采用溶胶-凝胶法制备了钙钛矿结构的LaFeO_3纳米粒子。利用热分析(TG-DTA)、X射线衍射(XRD)、扫描电子显微镜(SEM)等手段研究了热处理温度、A位Y掺杂对LaFeO_3成相、晶体结构、形貌等的影响,发现溶胶-凝胶法制备LaFeO_3纳米粒子的成相温度低于500℃,A位Y掺杂增大了LaFeO_3晶粒的生长活化能、抑制了晶粒生长。以LaFeO_3纳米粒子为敏感材料制备了旁热式气敏元件,通过元件的乙醇敏感性能测试,结果表明,250℃时LaFeO_3气敏元件对不同浓度乙醇具有良好的气敏性;随着乙醇浓度的增大,元件的灵敏度近线性增长;700℃热处理获得未掺杂LaFeO_3的乙醇敏感性能最佳,其对100×10~(-6)乙醇的灵敏度可达54;A位Y掺杂量为10%(摩尔比)时,元件对乙醇的灵敏度更好,其对100×10~(-6)乙醇的灵敏度可达163。  相似文献   

4.
通过电沉积法制备出Fe纳米线,再将纳米线转化成空心的铁氧化物半导体纳米花,其大小均匀,粒径250 nm,具有气敏响应性能。在纳米花上掺杂Au纳米颗粒,气敏响应性能显著提高,具有较高的选择性、稳定性和灵敏度,是较理想的气敏传感器材料。  相似文献   

5.
采用水热法制备出立方体形貌的氧化铟纳米材料,然后通过在立方体氧化铟表面复合氧化钌,来改善氧化铟纳米材料的气敏性能。复合氧化钌后的RuO_2@In_2O_3纳米颗粒仍具备In_2O_3立方体规整的形貌,且分布仍保持原状,尺寸大小也没有发生变化;将所得样品制成气敏元件,气敏测试结果显示样品对三乙胺气体展现出较高的气敏响应,气敏元件最佳工作温度较原样相比有所降低(260°C),对三乙胺表现出良好的气敏响应特性,气敏元件的灵敏度高、稳定性好、响应-恢复时间短、选择性好。  相似文献   

6.
本文制备了Al_2O_3/SiO_2混杂颗粒填充的环氧树脂基材料,并通过磨损试验机和扫描电子显微镜研究了材料的摩擦磨损性能和磨损机理。结果表明:采用KH570表面改性的纳米Al_2O_3/SiO_2混杂颗粒填充分散良好;Al_2O_3/SiO_2质量分数为10%时,环氧树脂材料的磨损率为2.71×10~(-6)mm~3/(N·m),摩擦系数为0.25,显著提高了环氧树脂的抗磨损性能,且硬度提高到了85D;环氧树脂基复合材料磨损机理以粘着磨损和磨粒磨损为主。  相似文献   

7.
采用溶胶-凝胶法结合静电纺丝技术制备了直径20~60 nm的超细氧化铟(In2O3)纳米陶瓷纤维及纳米陶瓷纤维无纺布。采用XRD,IR,SEM,HR-TEM,TGA等分析方法对纳米纤维的形貌和显微结构进行了表征,并研究了其气敏特性。由700℃下煅烧的该超细In2O3纳米纤维所制备的气敏元件具有较好的反应和选择性,对甲醛气体表现出较快的响应和恢复速度。  相似文献   

8.
三氧化钨作为一种宽禁带的n型半导体,它在气敏传感和催化领域受到了广泛的关注,通过在不同温度下,以钨酸钠和盐酸为原料制得钨酸前驱体,钨酸经过水热反应得到纳米WO_3化合物,对产物进行X射线衍射(XRD)表征,制得的纳米WO_3为六方晶型,且结晶度较高。在不同浓度乙醇和丙酮的情况下,制备的产物均具有一定的响应性,在0.5 g硫脲作助剂下,40℃下制得的钨酸经水热反应后的产物具有最优的气敏性能。  相似文献   

9.
《云南化工》2019,(9):1-3
采用溶剂热法制备钨酸铋/石墨烯(Bi_2WO_6/RGO)光催化剂,然后利用光还原法将Au纳米颗粒沉积于该二元光催化剂表面,制备出Au/Bi_2WO_6/RGO三元复合可见光催化剂。运用X射线衍射(XRD)、紫外可见漫反射吸收光谱(UV-Vis DRS)和透射电镜(TEM)对催化剂的晶体结构、光吸收性能、形貌性能进行了分析表征。以罗丹明B (Rh B)为模拟污染物,评价了该催化剂的可见光催化性能。结果表明,RGO和Au纳米颗粒的引入,增强了Bi_2WO_6可见光吸收,同时抑制了光生载流子的复合,从而提高Bi_2WO_6可见光催化降解RhB的性能。  相似文献   

10.
杜锐  尹珂  牛晓娟  涂亚芳 《辽宁化工》2022,(11):1501-1504
通过静电纺丝法制备了单斜相WO3纳米纤维,通过简单的涂抹方式将其印刷到Ag-Pd电极片上制备成气敏传感元件。将WO3气敏元件用于正丁醇气体敏感性测试,结果表明,在350℃下,它对体积分数为100×10-6的正丁醇的灵敏度为23。同时,该气敏元件表现出优良的响应/恢复特性,其响应时间为34s,恢复时间为26s。结合X射线衍射、扫描电镜和比表面积等表征结果,分析了样品的气敏机理。  相似文献   

11.
氧化铟纳米棒的气敏特性   总被引:5,自引:1,他引:5  
以非离子表面活性剂烷基苯酚聚氧乙烯醚OP-10为形貌控制剂合成In2O3纳米棒.用热重-差示扫描量热法、X射线衍射和透射电镜对In2O3纳米棒的热分解过程、晶体结构和微观形貌进行表征.对纳米棒制得的气敏元件进行气敏性能测试,同时用扫描电子显微镜及比表面积和孔隙度分析仪对元件的表面形貌和材料的介孔结构进行了分析.结果表明:制得的In2O3为立方晶型的纳米棒,直径约20 nm,长度约120 nm.与In2O3纳米颗粒气敏性能相比,In2O3 纳米棒对三甲胺具有更高的灵敏度和选择性.用In2O3纳米棒制的气敏元件对三甲胺在一定的浓度范围内的灵敏度与浓度呈现良好的双对数线性关系.棒状材料中形成的大量介孔对气敏性能的提高有着重要的作用.  相似文献   

12.
以赤泥固废为原料,采用酸解-碱沉淀法制备了赤泥粉体催化剂,并提出一种将催化剂直接喷入SNCR尾气中的除氨工艺,考察了催化剂加入点温度、空速、NH_3浓度及水蒸气对氨去除能力的影响。研究发现,该催化过程具有很高的活性和N_2的选择性,450℃以上NH_3的转化率可达100%,同时在400~500℃间,N2的选择性高于80%,达到了很好的除氨效果;在500℃,空速为3×10~6~6×10~6h~(-1)之间时,出口NH_3浓度均为0;此工艺对于逃逸NH_3浓度的适用性较强,入口[NH_3]=50×10~(-6)~1000×10~(-6)mol/L范围内均可完全脱除,且具有一定的抗水能力。通过一系列表征发现,该种方法制备的赤泥催化剂不仅消除了原始固废的强碱性,还提高了其表面酸性,具有较高的比表面积、孔容和丰富的表面微观结构,使NH_3的吸附及活化反应能力大大增加;该催化剂过程遵循iSCR机理,在400~500℃温度区间主要发生NH_3-SCO反应,低于400℃主要发生NH_3-SCR反应,粉体催化剂通过NH_3-SCR和NH_3-SCO协同反应达到了去除尾气中微量氨的目的。  相似文献   

13.
采用水热法制备了CdSnO_3纳米微粒,通过X射线衍射和透射电镜分别对CdSnO_3的物相和形貌进行了表征。结果发现,样品为梭形和不规则的小颗粒。对基于CdSnO_3纳米微粒所制作的气敏元件在乙醇、三乙胺和苯中的气敏性能进行了研究。测试结果表明,在340℃的最佳工作温度下,元件对1000 mg/L的三乙胺的灵敏度达38.4,响应和恢复时间分别为15 s和11 s。  相似文献   

14.
首先,采用水热法合成WO_(3-x)前驱体,再用浸渍法和热分解法制得Pt/WO_(3-x)纳米催化剂。利用XRD、TEM以及H2-TPR测试方法对其进行了表征分析。结果表明,Pt纳米颗粒在WO_(3-x)表面分散性好,并且Pt纳米颗粒与WO_(3-x)之间存在较强的相互作用。在对硝基苯酚加氢反应中,与Pt/Al_2O_3纳米催化剂相比,Pt/WO_(3-x)纳米催化剂在300℃焙烧后显示出优越的催化性能,这可能归因于金属与金属氧化物之间的强相互作用。  相似文献   

15.
基于Ru O2/石墨烯纳米复合材料构建了一种新型的多巴胺(DA)电化学生物传感器。我们采用差分脉冲伏安法(DPV)对传感器检测性能进行了探究,该传感器对DA有着显著的电催化作用,响应迅速而且灵敏度高,并且能有效地排除高浓度的AA和UA的干扰,DA的氧化峰电流与浓度在3×10-6~2×10-4 mol?L-1范围内呈良好的线性关系,最低检测限为8.75×10-4 mol?L-1。经过探究,基于Ru O2/RGO/GCE构建的多巴胺电化学生物传感器具有抗干扰,选择性强,催化性高,重现性和稳定性好等优点。  相似文献   

16.
采用水热法,通过改变溶液pH值,可控合成了具有Cl_2气敏性能的不同形貌ZnO。利用X射线衍射、扫描电子显微镜、透射电子显微镜、比表面积测试、光致发光光谱对不同形貌的ZnO样品进行表征,分析了不同形貌ZnO的形成机理。采用静态配气法对其气敏性能进行测试,且从比表面积、表面氧缺陷等角度分析了不同形貌ZnO与其Cl_2气敏性能之间的关系。结果表明:与pH值为11或12时得到的圆片状或汉堡状的ZnO相比,pH值为14或13时得到的棒花状或片花状ZnO对Cl_2具有更好的气敏性能。棒花状或片花状ZnO可在较宽的体积浓度范围(1~3000)×10~(-6)内对Cl_2进行检测,且响应和恢复时间短:对体积浓度为100×10~(-6)的Cl_2,其响应时间分别为3和2 s,恢复时间分别为68和69 s。另外,2种花状ZnO对Cl_2有很好的选择性,且40 d的稳定性测试表明,其对Cl_2敏感特性基本保持不变。  相似文献   

17.
本文利用一步合成装技术在碳纸表面合成雪花片形状的金(Au)纳米结构通过控制聚乙烯亚胺和Au纳米颗粒的浓度和反应时间。利用聚乙烯亚胺上的N与Au形成N-Au纳米颗粒组装成雪花形状Au纳米结构。用扫描电镜来表征雪花形状Au纳米结构的形貌,Au纳米结构很均匀的分散在碳纸表面,并不存在大的团聚。电化学技术(循环伏安法和计时电流分析法)检测雪花形状Au纳米结构对抗坏血酸的响应情况,显示修饰电极对抗坏血酸有很好的响应,在抗坏血酸浓度1×10~(-6)~1.15×10~(-4) mol/L的范围内,氧化电流与其浓度存在线性关系(R=0.998),检测限为6×10~(-7) mol/L;另外传感器具有很好的稳定性和选择性,为小分子污染物的检测提供新方法。  相似文献   

18.
工业生产生活中产生的乙醛气体需要实时高效监测,利用水热法制备了WO_(3)纳米片和一系列Ti_(3)C_(2)T_(x)-WO_(3)复合材料。采用X射线衍射法、扫描电子显微镜、Fourier红外光谱、X射线能谱等对制备出的Ti_(3)C_(2)T_(x)-WO_(3)复合材料进行了结构和形貌表征。对Ti_(3)C_(2)T_(x)-WO_(3)复合材料进行了气敏性能研究,并且探究了碳化钛加入量对Ti_(3)C_(2)T_(x)-WO_(3)复合材料气敏性能的影响。结果表明:Ti_(3)C_(2)T_(x)的加入能够有效提高WO_(3)纳米片的气敏性能。当Ti_(3)C_(2)T_(x)的加入量在7%(质量分数)时,Ti_(3)C_(2)T_(x)-WO_(3)复合材料的最佳工作温度优化为80℃。7%Ti_(3)C_(2)T_(x)-WO_(3)材料在80℃时对100μL/L的乙醛气体的灵敏度达到了32.9,最低检测限为0.1μL/L。  相似文献   

19.
采用共沉淀法制备HoCrO3前驱体,将前驱体在不同条件下热处理得到铬酸钬纳米粉体。利用X射线衍射仪和扫描电子显微镜对HoCrO3纳米粉体的晶体结构和微观形貌进行了表征,对用HoCrO3纳米粉制作的元件进行气敏性能测试,研究了热处理条件对HoCrO3气敏元件气敏性能的影响。结果表明:所制备的HoCrO3粉体为纳米颗粒,平均粒径约为50nm,属于钙钛矿型复合氧化物;采用800℃保温2h制备的HoCrO3气敏元件对三甲胺气体具有较高的灵敏度、良好的选择性和稳定性;样品的检测限较低,对体积分数为1×10^-7三甲胺的灵敏度为3。HoCrO3是检测三甲胺的一种很有应用前景的半导体气敏材料。  相似文献   

20.
采用溶胶-凝胶法,制得Al_2O_3掺杂质量分数分别为0、2.96%、4.96%、6.96%的纳米Al_2O_3-ZnO粉体,样品经700℃退火后对其物相及表面形貌进行表征,测试了不同Al_2O_3掺杂量Al_2O_3-ZnO样品的气敏特性,研究了结晶粒径、掺杂浓度、工作温度等对元件气敏特性的影响;通过对元件进行控温控湿老化实验,研究了老化温度、相对湿度对元件稳定性的影响;并根据气体吸附、脱附模型与半导体能带理论,对气敏机理进行了进一步的讨论。结果表明:Al_2O_3-ZnO对丙酮表现出良好的选择性和稳定性,掺杂为4.96%Al_2O_3的Al_2O_3-ZnO,经700℃退火后,在64℃下,对含量为100×10~(-6)(体积分数)的丙酮的灵敏度为29.24,响应时间和恢复时间均为2 s;丙酮含量低至10×10~(-6)时,灵敏度为3.23,响应时间和恢复时间分别为4 s和7 s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号