首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a distributed algorithm for maximum cardinality matching in general graphs. On a general graph withn vertices, our algorithm requiresO(n 5/2) messages in the worst case. On trees, our algorithm computes a maximum matching usingO(n) messages after the election of a leader.  相似文献   

2.
The general maximum matching algorithm of micali and vazirani   总被引:1,自引:1,他引:0  
We give a clear exposition of the algorithm of Micali and Vazirani for computing a maximum matching in a general graph. This is the most efficient algorithm known for general matching. On a graph withn vertices andm edges this algorithm runs inO(n 1/2 m) time.Work on this paper has been supported by the Office of Naval Research under Contract N00014-85-K-0570 and by the Eastman Kodak Company.  相似文献   

3.
We give anO(log4 n)-timeO(n 2)-processor CRCW PRAM algorithm to find a hamiltonian cycle in a strong semicomplete bipartite digraph,B, provided that a factor ofB (i.e., a collection of vertex disjoint cycles covering the vertex set ofB) is computed in a preprocessing step. The factor is found (if it exists) using a bipartite matching algorithm, hence placing the whole algorithm in the class Random-NC. We show that any parallel algorithm which can check the existence of a hamiltonian cycle in a strong semicomplete bipartite digraph in timeO(r(n)) usingp(n) processors can be used to check the existence of a perfect matching in a bipartite graph in timeO(r(n)+n 2 /p(n)) usingp(n) processors. Hence, our problem belongs to the class NC if and only if perfect matching in bipartite graphs belongs to NC. We also consider the problem of finding a hamiltonian path in a semicomplete bipartite digraph.  相似文献   

4.
We give a clear exposition of the algorithm of Micali and Vazirani for computing a maximum matching in a general graph. This is the most efficient algorithm known for general matching. On a graph withn vertices andm edges this algorithm runs inO(n 1/2 m) time.  相似文献   

5.
The maximum weight matching problem is a fundamental problem in graph theory with a variety of important applications. Recently Manne and Mjelde presented the first self-stabilizing algorithm computing a 2-approximation of the optimal solution. They established that their algorithm stabilizes after O(2n) (resp. O(3n)) moves under a central (resp. distributed) scheduler. This paper contributes a new analysis, improving these bounds considerably. In particular it is shown that the algorithm stabilizes after O(nm) moves under the central scheduler and that a modified version of the algorithm also stabilizes after O(nm) moves under the distributed scheduler. The paper presents a new proof technique based on graph reduction for analyzing the complexity of self-stabilizing algorithms.  相似文献   

6.
Given two processes, each having a total-ordered set ofn elements, we present a distributed algorithm for finding median of these 2n elements using no more than logn +O(logn) messages, but if the elements are distinct, only logn +O(1) messages will be required. The communication complexity of our algorithm is better than the previously known result which takes 2 logn messages.  相似文献   

7.
We present a randomized algorithm for finding maximum matchings in planar graphs in timeO(n ω/2), whereω is the exponent of the best known matrix multiplication algorithm. Sinceω<2.38, this algorithm breaks through theO(n 1.5) barrier for the matching problem. This is the first result of this kind for general planar graphs. We also present an algorithm for generating perfect matchings in planar graphs uniformly at random usingO(n ω/2) arithmetic operations. Our algorithms are based on the Gaussian elimination approach to maximum matchings introduced in [16]. This research was supported by KBN Grant 4T11C04425.  相似文献   

8.
Given a set of n intervals representing an interval graph, the problem of finding a maximum matching between pairs of disjoint (nonintersecting) intervals has been considered in the sequential model. In this paper we present parallel algorithms for computing maximum cardinality matchings among pairs of disjoint intervals in interval graphs in the EREW PRAM and hypercube models. For the general case of the problem, our algorithms compute a maximum matching in O( log 3 n) time using O(n/ log 2 n) processors on the EREW PRAM and using n processors on the hypercubes. For the case of proper interval graphs, our algorithm runs in O( log n ) time using O(n) processors if the input intervals are not given already sorted and using O(n/ log n ) processors otherwise, on the EREW PRAM. On n -processor hypercubes, our algorithm for the proper interval case takes O( log n log log n ) time for unsorted input and O( log n ) time for sorted input. Our parallel results also lead to optimal sequential algorithms for computing maximum matchings among disjoint intervals. In addition, we present an improved parallel algorithm for maximum matching between overlapping intervals in proper interval graphs. Received November 20, 1995; revised September 3, 1998.  相似文献   

9.
Let G=(V, E) be a graph with vertex set V of size n and edge set E of size m. A vertex vV is called a hinge vertex if there exist two vertices in V\{v} such that their distance becomes longer when v is removed. In this paper, we present a distributed algorithm that finds all hinge vertices on an arbitrary graph. The proposed algorithm works for named static asynchronous networks and achieves O(n 2) time complexity and O(m) message complexity. In particular, the total messages exchanged during the algorithm are at most 2m(log n+nlog n+1) bits.  相似文献   

10.
A positive integern is a perfect power if there exist integersx andk, both at least 2, such thatn=x k . The usual algorithm to recognize perfect powers computes approximatekth roots forklog 2 n, and runs in time O(log3 n log log logn).First we improve this worst-case running time toO(log3 n) by using a modified Newton's method to compute approximatekth roots. Parallelizing this gives anNC 2 algorithm.Second, we present a sieve algorithm that avoidskth-root computations by seeing if the inputn is a perfectkth power modulo small primes. Ifn is chosen uniformly from a large enough interval, the average running time isO(log2 n).Third, we incorporate trial division to give a sieve algorithm with an average running time ofO(log2 n/log2 logn) and a median running time ofO(logn).The two sieve algorithms use a precomputed table of small primes. We give a heuristic argument and computational evidence that the largest prime needed in this table is (logn)1+O(1); assuming the Extended Riemann Hypothesis, primes up to (logn)2+O(1) suffice. The table can be computed in time roughly proportional to the largest prime it contains.We also present computational results indicating that our sieve algorithms perform extremely well in practice.This work forms part of the second author's Ph.D. thesis at the University of Wisconsin-Madison, 1991. This research was sponsored by NSF Grants CCR-8552596 and CCR-8504485.  相似文献   

11.
This paper presents a parallel algorithm that approximates the surface of an object from a collection of its planar contours. Such a reconstruction has wide applications in such diverse fields as biological research, medical diagnosis and therapy, architecture, automobile and ship design, and solid modeling. The surface reconstruction problem is transformed into the problem of finding a minimum-cost acceptable path on a toroidal grid graph, where each horizontal and each vertical edge have the same orientation. An acceptable path is closed path that makes a complete horizontal and vertical circuit. We exploit the structure of this graph to develop efficient parallel algorithms for a message-passing computer. Givenp processors and anm byn toroidal graph, our algorithm will find the minimum cost acceptable path inO(mn log(m)/p) steps, ifp =O(mn/((m + n) log(mn/(m + n)))), which is an optimal speedup. We also show that the algorithm will sendO(p 2(m + n)) messages. The algorithm has a linear topology, so it is easy to embed the algorithm in common multiprocessor architectures.  相似文献   

12.
An algorithm for finding a minimal edge coloring of a bipartite multigraph is presented. The algorithm usesO(V 1/2 ElogV + V) time andO(E + V) space. It is based on a divide-and-conquer strategy, using euler partitions to divide the graph. A modification of the algorithm for matching is described. This algorithm finds a maximum matching of a regular bipartite graph with all degrees 2n, inO(E + V) time andO(E + V) space.This work was partially supported by the National Science Foundation under Grant GJ36461.  相似文献   

13.
We present a simple parallel algorithm for computing the greatest common divisor (gcd) of twon-bit integers in the Common version of the CRCW model of computation. The run-time of the algorithm in terms of bit operations isO(n/logn), usingn 1+ processors, where is any positive constant. This improves on the algorithm of Kannan, Miller, and Rudolph, the only sublinear algorithm known previously, both in run time and in number of processors; they requireO(n log logn/logn),n 2 log2 n, respectively, in the same CRCW model.We give an alternative implementation of our algorithm in the CREW model. Its run-time isO(n log logn/logn), usingn 1+ processors. Both implementations can be modified to yield the extended gcd, within the same complexity bounds.Supported in part by an IBM Graduate Fellowship and a Bantrell Postdoctoral Fellowship.Supported in part by a Weizmann Postdoctoral Fellowship.4 All logarithms are to base 2.  相似文献   

14.
We study the problem of scheduling unit execution time jobs with release dates and precedence constraints on two identical processors. We say that a schedule is ideal if it minimizes both maximum and total completion time simultaneously. We give an instance of the problem where the min-max completion time is exceeded in every preemptive schedule that minimizes total completion time for that instance, even if the precedence constraints form an intree. This proves that ideal schedules do not exist in general when preemptions are allowed. On the other hand, we prove that, when preemptions are not allowed, then ideal schedules do exist for general precedence constraints, and we provide an algorithm for finding ideal schedules in O(n 3) time, where n is the number of jobs. In finding such ideal schedules we resolve a conjecture of Baptiste and Timkovsky (Math. Methods Oper. Res. 60(1):145–153, 2004) Further, our algorithm for finding min-max completion-time schedules requires only O(n 3) time, while the most efficient solution to date has required O(n 9) time.  相似文献   

15.
Previous research on developing parallel triangulation algorithms concentrated on triangulating planar point sets.O(log3 n) running time algorithms usingO(n) processors have been developed in Refs. 1 and 2. Atallah and Goodrich(3) presented a data structure that can be viewed as a parallel analogue of the sequential plane-sweeping paradigm, which can be used to triangulate a planar point set inO(logn loglogn) time usingO(n) processors. Recently Merks(4) described an algorithm for triangulating point sets which runs inO(logn) time usingO(n) processors, and is thus optimal. In this paper we develop a parallel algorithm for triangulating simplicial point sets in arbitrary dimensions based on the idea of the sequential algorithm presented in Ref. 5. The algorithm runs inO(log2 n) time usingO(n/logn) processors. The algorithm hasO(n logn) as the product of the running time and the number of processors; i.e., an optimal speed-up.  相似文献   

16.
Finding a dominating set of minimum cardinality is an NP-hard graph problem, even when the graph is bipartite. In this paper we are interested in solving the problem on graphs having a large independent set. Given a graph G with an independent set of size z, we show that the problem can be solved in time O(2nz), where n is the number of vertices of G. As a consequence, our algorithm is able to solve the dominating set problem on bipartite graphs in time O(2n/2). Another implication is an algorithm for general graphs whose running time is O(n1.7088).  相似文献   

17.
Xin He 《Algorithmica》1990,5(1):545-559
We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.  相似文献   

18.
In this paper we introduce a general framework for casting fully dynamic transitive closure into the problem of reevaluating polynomials over matrices. With this technique, we improve the best known bounds for fully dynamic transitive closure. In particular, we devise a deterministic algorithm for general directed graphs that achieves O(n 2) amortized time for updates, while preserving unit worst-case cost for queries. In case of deletions only, our algorithm performs updates faster in O(n) amortized time. We observe that fully dynamic transitive closure algorithms with O(1) query time maintain explicitly the transitive closure of the input graph, in order to answer each query with exactly one lookup (on its adjacency matrix). Since an update may change as many as Ω(n 2) entries of this matrix, no better bounds are possible for this class of algorithms. This work has been partially supported by the Sixth Framework Programme of the EU under contract number 507613 (Network of Excellence “EuroNGI: Designing and Engineering of the Next Generation Internet”), and number 001907 (“DELIS: Dynamically Evolving, Large Scale Information Systems”), and by the Italian Ministry of University and Research (Project “ALGO-NEXT: Algorithms for the Next Generation Internet and Web: Methodologies, Design and Experiments”). Portions of this paper have been presented at the 41st Annual Symp. on Foundations of Computer Science, 2000.  相似文献   

19.
We study the problem of maintaining the 2-edge-, 2-vertex-, and 3-edge-connected components of a dynamic planar graph subject to edge deletions. The 2-edge-connected components can be maintained in a total ofO(n logn) time under any sequence of at mostO(n) deletions. This givesO(logn) amortized time per deletion. The 2-vertex- and 3-edge-connected components can be maintained in a total ofO(n log2 n) time. This givesO(log2 n) amortized time per deletion. The space required by all our data structures isO(n). All our time bounds improve previous bounds.This work was partially supported by the ESPRIT II Basic Research Actions Program of the EC under Project ALCOM II (contract No. 7141) and Project ASMICS. A preliminary version of this paper appears in [12].Partially supported by a CNR Fellowship. Work done while the author was visiting Columbia University.On leave from IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA.  相似文献   

20.
Yijie Han 《Algorithmica》2008,51(4):428-434
We present an O(n 3(log log n/log n)5/4) time algorithm for all pairs shortest paths. This algorithm improves on the best previous result of O(n 3/log n) time. Research supported in part by NSF grant 0310245.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号