首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, an innovative silicon solar cell structure has been developed at ISFH which is capable of achieving very high cell efficiencies on industrial-size wafers with a simple photolithography-free processing sequence. As the corresponding solar cells essentially rely on the application of obliquely evaporated contacts they are denoted as OECO cells. In this paper the successful up-scaling of the novel OECO process from 21% efficient 4 cm2 laboratory devices to the fabrication of large-area (100 cm2) silicon solar cells is described, and independently confirmed total area efficiencies of 20% are reported for 10×10 cm2 OECO-type solar cells fabricated on p-type float-zone silicon.  相似文献   

2.
Undoped and phosphorus-doped Ag-based pastes were applied as circular contacts to the (1 1 1) surface of dendritic web n-type Si. Current–voltage characteristics of as-deposited contacts and contacts annealed at 780°C for 10 min, 950°C for 5 min, 1000°C for 10 min were measured and compared. Annealing above the Ag–Si eutectic temperature (835°C) yielded Si precipitation within the Ag matrix, resulting in increased current across the metal/semiconductor interface. The contact resistivity was significantly lower for P-doped (<0.04 Ω cm2) than for undoped (1.90 Ω cm2) Ag contacts, both of which were annealed at 1000°C. As supported by secondary ion mass spectrometry analyses, these results are attributed to an enhanced P doping level in the Si substrate after annealing the P-doped contacts. A p–n junction diode was demonstrated by alloying the Ag–P paste with p-type Si at 1000°C. The contact resistance was inferred from diode IV data to be 0.013 Ω cm2, a value which is comparable to the 0.010 Ω cm2 target value for solar cell contacts.  相似文献   

3.
Choice of substrate for thin crystalline silicon solar cells requires a compromise between cost and quality. There are three generic substrate types, namely a transparent substrate (such as glass), an opaque substrate (such as a ceramic or metal) and low-cost multicrystalline silicon. Glass has the advantage of eliminating absorption within the substrate. However, the larger effective diffusion length, the improved surface passivation and the increased process flexibility obtainable with an opaque substrate, particularly low-cost multicrystalline silicon, may considerably outweigh the modest optical benefits of a transparent substrate. In this paper it is shown that the advantage in effective diffusion length that is required of a cell grown on an opaque substrate in order to offset the light-trapping advantages of a glass substrate is about a factor of two.  相似文献   

4.
Single crystalline silicon solar cells have demonstrated high-energy conversion efficiencies up to 24.7% in a laboratory environment. One of the recent trends in high-efficiency silicon solar cells is to fabricate these cells on different silicon substrates. Some silicon wafer suppliers are also involved in such development. Another recent trend is the increased production of high-efficiency silicon cells, some of them with low-cost structures. This paper will discuss the progress at the University of New South Wales, and these trends in other organisations.  相似文献   

5.
To improve the economy of photovoltaics, efficiencies of solar cells have to be drastically increased without using complex technologies. This work demonstrates that with the obliquely evaporated contact metal-insulator-semiconductor (MIS)-n+p solar cell structure recently developed at ISFH efficiencies exceeding 21% can be obtained using only four simple fabrication steps: (i) mechanical surface grooving, (ii) P-diffusion, (iii) oblique vacuum evaporation of Al, and (iv) plasma silicon nitride deposition. Cell design and processing sequences are outlined together with the importance of MIS contacts as both low-cost and high efficiency features. The custom-made pilot line equipment for mass production of 20% efficient 10×10 cm2 Cz silicon solar cells including Ga doped wafers is described.  相似文献   

6.
The development of crystalline silicon solar cells is traced from their invention to the present day, with an emphasis on the major advances (“milestones”) along the way. The survey covers cells for power generation in space as well as those for terrestrial applications.  相似文献   

7.
Recently, a substantially simplified PERC silicon solar cell has been developed at ISFH with independently confirmed 1-sun efficiencies of up to 20.0%. This paper describes the details of the relatively simple cell fabrication process and experimentally characterizes the new cells. The simplified design involves reflection control by means of random pyramids, the direct evaporation of the front metal grid onto the random pyramids, elimination of the need for nontextured areas underneath the contact grid, and the use of a single phosphorous diffusion (1-step emitter).  相似文献   

8.
In this work, we fabricate heterojunction silicon solar cells on p-type substrates whose rear surface configuration is based on dielectric passivation and laser fired contacts (LFC cells). This is an alternative to boron-doped amorphous silicon film, with which we also fabricate solar cells for direct comparison (HJ cells). As substrates, 3.5 and 0.8 Ω cm p-type double-side polished FZ c-Si wafers are used. Regarding surface passivation for highly doped substrates, LFC configuration has some advantage due to the higher difficulty in creating an efficient amorphous back surface field. Additionally, those substrates are also more advantageous in terms of carrier injection when the rear surface is locally contacted. Thus LFC cells made on 0.8 Ω cm substrates reach Voc values up to 680 mV, in the same range as that of their HJ cell counterpart, with better FF demonstrating that LFC configuration is a feasible alternative for highly doped substrates. Focusing on the impact of the distance between rear contacts on cell performance, we found a trade-off between open circuit voltage Voc and fill factor FF. Finally electroluminescence characterization and the dependence of Voc on pitch, modeled by Fischer's equation, indicate that the depassivated area due to the laser processing of the contacts is bigger than the contacted area.  相似文献   

9.
The aim of this work is to clarify the potential of the low cost polycrystalline silicon String Ribbon for fabricating high efficiency solar cells with gettering and passivation techniques. The application of P and Al gettering as well as SiO2 and H passivation schemes enhanced the material quality and boosted the efficiency of the solar cells. A cell efficiency above 15% has been achieved using a simple fabrication process.  相似文献   

10.
Luminescent porous silicon (PS) was prepared for the first time using a spraying set-up, which can diffuse in a homogeneous manner HF solutions, on textured or untextured (1 0 0) oriented monocrystalline silicon substrate. This new method allows us to apply PS onto the front-side surface of silicon solar cells, by supplying very fine HF drops. The front side of N+/P monocrystalline silicon solar cells may be treated for long periods without altering the front grid metallic contact. The monocrystalline silicon solar cells (N+/P, 78.5 cm2) which has undergone the HF-spraying were made with a very simple and low-cost method, allowing front-side Al contamination. A poor but expected 7.5% conversion efficiency was obtained under AM1 illumination. It was shown that under optimised HF concentration, HF-spraying time and flow HF-spraying rate, Al contamination favours the formation of a thin and homogeneous hydrogen-rich PS layer. It was found that under optimised HF-spraying conditions, the hydrogen-rich PS layer decreases the surface reflectivity up to 3% (i.e., increase light absorption), improves the short circuit current (Isc), and the fill factor (FF) (i.e., decreases the series resistance), allowing to reach a 12.5% conversion efficiency. The dramatic improvement of the latter is discussed throughout the influence of HF concentration and spraying time on the IV characteristics and on solar cells parameters. Despite the fact that the thin surfae PS layer acts as a good anti-reflection coating (ARC), it improves the spectral response of the cells, especially in the blue-side of the solar spectrum, where absorption becomes greater, owing to surface band gap widening and conversion of a part of UV and blue light into longer wavelengths (that are more suitable for conversion in a Si cell) throughout quantum confinement into the PS layer.  相似文献   

11.
The hydrogenated silicon nitride films (SiNx:H) deposited by plasma enhanced chemical vapor deposition (PECVD) technique is commonly used as an antireflection coating as well as surface passivating layer of crystalline silicon solar cells. The refractive indices of SiNx:H films could be changed by varying the growth gas ratio R(=NH3/SiH4+NH3) and annealing temperature. For optimum SiNx:H film, the optical and chemical characterization tools by varying the film deposition and annealing condition were employed in this study. Metal-insulator-semiconductor (MIS) devices were fabricated using SiNx:H as an insulator layer and they were subjected to capacitance-voltage (C-V) and current-voltage (I-V) measurements for electrical characterization. The effect of rapid thermal annealing (RTA) on the surface passivation as well as antireflection properties of the SiNx:H films deposited at various process conditions were also investigated for the fabrication of low cost and high efficiency silicon solar cells.  相似文献   

12.
硅太阳电池材料的研究进展   总被引:7,自引:0,他引:7  
目前各种太阳电池材料中,硅是最主要的材料。文章简要介绍单晶硅、多晶硅、带状硅、非晶硅以及多晶硅薄膜材料的研究状况,并对有关问题和太阳电池材料的发展趋势进行了讨论。  相似文献   

13.
Different ways of connecting solar cell structures to form multi-layer tandem solar cells have been considered by re-visiting relevant device designs. It is found that the present use of a series connection or tunnel junction approach is detrimental to charge-carrier collection in the tandem cells. Each tunnel junction introduced to the solar cell structure decelerates the charge carriers and allows them to recombine at the vicinity of the tunnel junction. The adoption of parallel connections has several advantages over series connections and there is high potential for achieving enhanced efficiencies in third generation tandem solar cells. In these devices, charge carriers are continuously accelerated across the whole device and collected in the external circuit. Multi charge-carrier production and impurity photo-voltaic mechanisms are also built into this system to enhance its performance by increasing the short-circuit current density.  相似文献   

14.
In order to manufacture high-efficiency Si solar cells with a passivated rear surface and local contacts, it is necessary to develop both an excellent rear-passivation scheme compatible with screen-printing technology and a robust patterning technique for local contact formation. In this work, we have fabricated Si solar cells on ∼130 μm thick substrates using manufacturable processing, where rear side was passivated with a plasma-enhanced chemical vapor deposited SiOx/SiNx/SiOxNy stack and local back contacts using laser. As a result of both the rear surface passivation stack and the laser-fired local contacts, cell efficiencies of up to 17.6% on a 148.6 cm2 Float-zone Si wafer and 17.2% for a 156.8 cm2 multicrystalline Si wafer were achieved. PC-1D calculations revealed that the cells had a back surface recombination velocity (BSRV) of ∼400 cm/s and a back surface reflectance (BSR) of over 90%, as opposed to standard full Al-BSF cells having a BSRV of ∼800 cm/s and a 70% BSR. This result clearly indicates that the new technique of the passivation scheme and the patterning using laser developed in this study are promising for manufacturing high-efficiency PERC-type thin Si solar cells.  相似文献   

15.
In this work the results of a structural investigation by SEM of porous silicon (PS) before and after diffusion processes are reported. The formation of PS n+/p structures were carried out on PS p/p silicon wafers with two methods: from POCl3 in a conventional furnace and from a phosphorous doped paste in an infrared furnace. Sheet resistance was found to be a strong function of PS structure. Further details on sheet resistance distribution are reported. The electrical contacts in prepared solar cells were obtained by screen printing process, with a Du Ponte photovoltaic silver paste for front contacts and home-prepared silver with 3% aluminium paste for the back ones. Metallization was done in the infrared furnace. Solar cell current–voltage characteristics were measured under an AM 1.5 global spectrum sun simulator. The average results for multi-crystalline silicon solar cells without antireflection coating are: Isc=720 (mA), Voc=560 (mV), FF=69%, Eff=10.6% (area 25 cm2).  相似文献   

16.
The absorption factor of a PV cell is defined as the fraction of incident solar irradiance that is absorbed by the cell. This absorption factor is one of the major parameters determining the cell temperature under operational conditions. Experimentally the absorption factor can be derived from reflection and transmission measurements. The spectral reflection and transmission factors were measured for a set of crystalline silicon (c-Si) samples with a gradually increasing complexity. The experimental results agree very well with the results from a 2D numerical model that was developed. It was found that the AM1.5 absorption factor of a typical encapsulated c-Si photovoltaic cell is as high as 90.5%. Insight was gained in the cell parameters that influence this absorption factor. The presence of texture at the front of the c-Si wafer of sufficient steepness is essential to achieve such a high absorption factor. Sub-bandgap solar irradiance is mainly absorbed in the very thin emitter by means of free-carrier absorption. By minimizing reflective losses over the entire solar spectrum, the AM1.5 absorption of c-Si cells can theoretically be increased to 93.0%. The effect on the annual yield of PV and PV/thermal systems is quantified.  相似文献   

17.
Although silicon solar cells based on layers less than 50 μm thick have become very popular, little attention has been paid to the role of the underlying silicon substrate. This treatment uses the device simulation program PC-1D and the ray tracing program SUNRAYS to examine the role of the substrate in contributing to the current and efficiency of textured and non-textured thin layer solar cells. For the case of a heavily doped silicon substrate, substrate contributions can be significant for cells with sufficiently thin base layers. For example, for the case of a silicon thin layer cell with a base layer thickness of 20 μm and a substrate doping of 6 × 1018 cm−3, the substrate contributes no more than 4% of the total short-circuit current. However, decreasing the base width to 5 μm results in an increase in this substrate contribution to 20%. Light trapping tends to alleviate the substrate contribution by increasing the effective path length in the base. Examination of the current components under forward bias reveals that for a thin layer cell with a high quality base and good front surface passivation, back diffusion of electrons into the substrate limits cell performance.  相似文献   

18.
对薄晶体硅太阳电池的生产工艺和材料进行了试验.通过调整背电极浆料和电池基片厚度,探索了减少太阳电池弯曲度的途径.试验显示,使用薄片铝浆对电池弯曲度的影响有明显改善,弯曲度可降低52%,电池片弯曲度最小为0.55 mm.  相似文献   

19.
The influence of the emitter thickness on the photovoltaic properties of monocrystalline silicon solar cells with porous silicon was investigated. The measurements were carried out on n+p silicon junction whose emitter depth was varied between 0.5 and 2.2 μm. A thin porous silicon layer (PSL), less than 100 nm, was formed on the n+ emitter. The electrical properties of the samples with PS were improved with decrease of the n+p junction depth. Our results demonstrate short-circuit current values of about 35–37 mA/cm2 using n+ region with 0.5 μm depth. The observed increase of the short-circuit current for samples with PS and thin emitter could be explained not only by the reduction of the reflection loss and surface recombination but also by the additional photogenerated carriers within the PSL. This assumption was confirmed by numerical modeling. The spectral response measurements were performed at a wavelength range of 0.4–1.1 μm. The relative spectral response showed a significant increase in the quantum efficiency of shorter wavelengths of 400–500 nm as a result of the PS coating. The obtained results point out that it would be possible to prepare a solar cell with 19–20% efficiency by the proposed simple technology.  相似文献   

20.
We developed a maskless plasma texturing technique for multicrystalline silicon cells using reactive ion etching that results in higher cell performance than that of standard untextured cells. Elimination of plasma damage has been achieved while keeping front reflectance to extremely low levels. Internal quantum efficiencies as high as those on planar cells have been obtained, boosting cell currents and efficiencies by up to 7% on evaporated metal and 4% on screen-printed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号