首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the Ras/Raf/mitogen-activated protein kinase kinase/mitogen-activated protein (MAP) kinase signaling cascade is initiated by activation of growth factor receptors and regulates many cellular events, including cell cycle control. Our previous studies suggested that the connexin-43 gap junction protein may be a target of activated MAP kinase and that MAP kinase may regulate connexin-43 function. We identified the sites of MAP kinase phosphorylation in in vitro studies as the consensus MAP kinase recognition sites in the cytoplasmic carboxyl tail of connexin-43, Ser255, Ser279, and Ser282. In this study, we demonstrate that activation of MAP kinase by ligand-induced activation of the epidermal growth factor (EGF) or lysophosphatidic acid receptors or by pervanadate-induced inhibition of tyrosine phosphatases results in increased phosphorylation on connexin-43. EGF and lysophosphatidic acid-induced phosphorylation on connexin-43 and the down-regulation of gap junctional communication in EGF-treated cells were blocked by a specific mitogen-activated protein kinase kinase inhibitor (PD98059) that prevented activation of MAP kinase. These studies confirm that connexin-43 is a MAP kinase substrate in vivo and that phosphorylation on Ser255, Ser279, and/or Ser282 initiates the down-regulation of gap junctional communication. Studies with connexin-43 mutants suggest that MAP kinase phosphorylation at one or more of the tandem Ser279/Ser282 sites is sufficient to disrupt gap junctional intercellular communication.  相似文献   

2.
Epidermal growth factor (EGF) has been found to induce enhanced gap junctional intercellular communication (GJIC) in the human kidney epithelial cell line K7. This is in contrast to what is reported for other cell types, which all show decreased GJIC in response to EGF. In the present study it is shown that 12-O-tetradecanoylphorbol-13-acetate (TPA) and EGF induce similar phosphorylation pattern of the gap junction protein connexin43 (Cx43) in K7 cells, although their effects on GJIC are opposite. Tyrosine phosphorylation of a 42 kD protein was observed to be induced concomitantly with phosphorylation of Cx43. EGF was however found to induce only serine phosphorylation of Cx43, indicating that the tyrosine kinase activity of the EGF receptor was not directly affecting the gap junction protein. The 42 kD protein phosphorylated on tyrosine was identified to be a mitogen activated protein (MAP) kinase. Both EGF and TPA was found to activate MAP kinase in these cells. Phosphorylation of Cx43 and enhancement of GJIC in response to EGF occurred with difference in time course. Phosphorylation of Cx43 was completed within 15 min, while the enhanced GJIC appeared 2-3 h later. It is therefore possible that regulation of synthesis or transport of Cx43 is responsible for the increase in GJIC, rather than direct involvement of Cx43 phosphorylation. This is in support of our previous finding that protein synthesis is necessary for EGF induced upregulation of GJIC in K7 cells.  相似文献   

3.
The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.  相似文献   

4.
Src family protein-tyrosine kinases possess several modular domains important for regulation of catalytic activity and interaction with potential substrates. Here, we explore interactions between the SH2 domain of Hck, a Src family kinase, and substrates containing SH2 domain-binding sites. We have synthesized a series of peptide substrates containing a high affinity SH2 domain binding site, (phospho)Tyr-Glu-Glu-Ile. We show that the presence of this sequence in a peptide results in a dramatic increase in the phosphorylation rate of a second tyrosine located at the N terminus. Enhanced phosphorylation is not a consequence of stimulation of enzymatic activity by C-terminal tail displacement but is imparted instead by a 10-fold reduction in the Km of the phosphotyrosine-containing peptide when compared with a control. The isolated catalytic domain of the non-receptor tyrosine kinase Abl does not show a preference for the pYEEI motif-containing peptide; however, the preference is restored when the SH2 domain of Src is introduced into Abl. Furthermore, enhanced phosphorylation is dependent on the distance between SH2 domain-binding site and phosphorylatable tyrosine, with the minimum distance requirement being seven amino acids. Reversing the orientation of the pYEEI motif with respect to the substrate sequence decreases phosphorylation by down-regulated Hck, but both orientations are utilized equally well by activated Hck. We discuss the possible implications of these results for processive phosphorylation of substrates in vivo by Src family kinases.  相似文献   

5.
Epithelial cells in primary ovine lens cultures express the gap junction proteins connexin43 (Cx43) and connexin49 (Cx49; a.k.a. MP70), a homologue of mouse connexin50. In contrast, lens cultures of differentiated, fiber-like cells (termed lentoid cells) express Cx49 and connexin46 (Cx46), but not Cx43. To investigate the regulation of lens cell gap junctions by protein kinase C (PKC), differentiating lens cultures were treated with the PKC activator 12-O-tetradecanoylphorbol-13-acetate (beta-TPA). Within 10 min, beta-TPA significantly inhibited the transfer of Lucifer Yellow dye between epithelial, but not lentoid, cells. This inhibition was correlated with the phosphorylation of Cx43 and was followed by the gradual disappearance of Cx43 from cell interfaces. The protein kinase inhibitor staurosporine prevented Cx43 phosphorylation and the loss of Cx43 from intercellular junctions. Following treatment of cultures with beta-TPA for 2-6 hr, Cx49 disappeared from epithelial cell interfaces, and by 24 hr of beta-TPA treatment, levels of Cx49 detected on immunoblots of purified epithelial membrane fractions had also diminished significantly. The beta-TPA-induced loss of Cx49 both from regions of epithelial cell contact and from isolated membranes was correlated with the disappearance of Cx49 mRNA. In contrast to the epithelial connexins, the lentoid connexins Cx49 and Cx46 were unaffected by even extended beta-TPA treatment. In spite of lentoid dye transfer being refractory to beta-TPA, significant levels of PKC-alpha (a beta-TPA-sensitive isoform) were detected in the lentoid cell. The response of lens gap junctions to beta-TPA depends upon the stage of differentiation and the complement of connexins expressed. The contrasting effects of beta-TPA on Cx43 and Cx49 in lens epithelial cells indicate a fundamental difference in the regulation of these connexin proteins in the developing mammalian lens.  相似文献   

6.
Integrin-mediated cell adhesion causes activation of MAP kinases and increased tyrosine phosphorylation of focal adhesion kinase (FAK). Autophosphorylation of FAK leads to the binding of SH2-domain proteins including Src-family kinases and the Grb2-Sos complex. Since Grb2-Sos is a key regulator of the Ras signal transduction pathway, one plausible hypothesis has been that integrin-mediated tyrosine phosphorylation of FAK leads to activation of the Ras cascade and ultimately to mitogen activated protein (MAP) kinase activation. Thus, in this scenario FAK would serve as an upstream regulator of MAP kinase activity. However, in this report we present several lines of evidence showing that integrin-mediated MAP kinase activity in fibroblasts is independent of FAK. First, a beta1 integrin subunit deletion mutant affecting the putative FAK binding site supports activation of MAP kinase in adhering fibroblasts but not tyrosine phosphorylation of FAK. Second, fibroblast adhesion to bacterially expressed fragments of fibronectin demonstrates that robust activation of MAP kinase can precede tyrosine phosphorylation of FAK. Finally, we have used FRNK, the noncatalytic COOH-terminal domain of FAK, as a dominant negative inhibitor of FAK autophosphorylation and of tyrosine phosphorylation of focal contacts. Using retroviral infection, we demonstrate that levels of FRNK expression sufficient to completely block FAK tyrosine phosphorylation were without effect on integrin-mediated activation of MAP kinase. These results strongly suggest that integrin-mediated activation of MAP kinase is independent of FAK and indicate the probable existence of at least two distinct integrin signaling pathways in fibroblasts.  相似文献   

7.
Syk, a nonreceptor protein-tyrosine kinase, is activated by both oxidative and osmotic stress and plays different roles in the transduction of stress signals. In this study, the regulation of oxidative and osmotic stress induced Syk activation was investigated utilizing Syk-negative DT40 cells, expressing various Syk mutants. Phosphorylation of Y518Y519 was demonstrated to be required for both oxidative and osmotic stress induced Syk activation. Syk activation by these two types of stress stimuli was a combination of both autophosphorylation and the activities of additional tyrosine kinases. Oxidative stress induced Syk tyrosine phosphorylation was almost completely attributed to autophosphorylation, whereas other tyrosine kinases were largely responsible for osmotic stress induced Syk tyrosine phosphorylation. Moreover, the Src homology 2 (SH2) domains of Syk differentially regulated Syk activation. Both mSH2(N) Syk and mSH2(C) Syk, in which the phosphotyrosine-dependent binding motif within the SH2 domains contained point mutations, showed a significantly higher activity than that observed in wild-type Syk, following osmotic stress treatment. In comparison, in response to oxidative stress, only mSH2(N) Syk demonstrated a stronger activation than wild-type Syk. Therefore, differential activation and regulation of Syk may give an insight into the distinctive functions of Syk in oxidative and osmotic stress signaling.  相似文献   

8.
9.
SHP-1 is an SH2-containing cytoplasmic tyrosine phosphatase that is widely distributed in cells of the hematopoietic system. SHP-1 plays an important role in the signal transduction of many cytokine receptors, including the receptor for erythropoietin, by associating via its SH2 domains to the receptors and dephosphorylating key substrates. Recent studies have suggested that SHP-1 regulates the function of Jak family tyrosine kinases, as shown by its constitutive association with the Tyk2 kinase and the hyperphosphorylation of Jak kinases in the motheaten cells that lack functional SHP-1. We have examined the interactions of SHP-1 with two tyrosine kinases activated during engagement of the erythropoietin receptor, the Janus family kinase Jak-2 and the c-fps/fes kinase. Immunoblotting studies with extracts from mouse hematopoietic cells demonstrated that Jak2, but not c-fes, was present in anti-SHP-1 immunoprecipitates, suggesting that SHP-1 selectively associates with Jak2 in vivo. Consistent with this, when SHP-1 was coexpressed with these kinases in Cos-7 cells, it associated with and dephosphorylated Jak2 but not c-fes. Transient cotransfection of truncated forms of SHP-1 with Jak2 demonstrated that the SHP-1-Jak2 interaction is direct and is mediated by a novel binding activity present in the N terminus of SHP-1, independently of SH2 domain-phosphotyrosine interaction. Such SHP-1-Jak2 interaction resulted in induction of the enzymatic activity of the phosphatase in in vitro protein tyrosine phosphatase assays. Interestingly, association of the SH2n domain of SHP-1 with the tyrosine phosphorylated erythropoietin receptor modestly potentiated but was not essential for SHP-1-mediated dephosphorylation of Jak2 and had no effect on c-fes phosphorylation. These data indicate that the main mechanism for regulation of Jak2 phosphorylation by SHP-1 involves a direct, SH2-independent interaction with Jak2 and suggest the existence of similar mechanisms for other members of the Jak family of kinases. They also suggest that such interactions may provide one of the mechanisms that control SHP-1 substrate specificity.  相似文献   

10.
Formation of a complex of the nucleotide exchange factor Sos, the SH2 and SH3 containing adaptor protein Grb2/Sem-5 and tyrosine phosphorylated EGF receptor and Shc has been implicated in the activation of Ras by epidermal growth factor (EGF) in fibroblasts: related mechanisms for activation of Ras operate in other cell types. An increase in the apparent molecular weight of Sos has been reported to occur after several minutes of receptor stimulation due to phosphorylation by mitogen-activated protein (MAP) kinases. We report here that treatment of human peripheral blood T lymphoblasts with phorbol esters causes a similar shift in mobility of Sos. This modification of Sos does not alter its ability to bind Grb2, but correlates with strong inhibition of the binding of the Sos/Grb2 complex to tyrosine phosphorylated sequences, either a tyrosine phosphopeptide in cell lysates or p36 in intact cells. This effect, along with the mobility shift of Sos, can be mimicked in vitro by phosphorylation of Sos by the mitogen-activated protein kinase, ERK1. A novel negative feedback mechanism therefore exists whereby activation of MAP kinases through Ras results in the uncoupling of the Sos/Grb2 complex from tyrosine kinase substrates without blocking the interaction of Sos with Grb2.  相似文献   

11.
12.
Graf is a GTPase-activating protein for Rho that interacts with focal adhesion kinase and co-localizes with the actin cytoskeleton (Hildebrand, J. D., Taylor, J. M. and Parsons, J. T. (1996) Mol. Cell. Biol. 16, 3169-3178). We examined the expression and regulation of Graf as a prelude to understanding the role of Graf in mediating signal transduction in vivo. We demonstrated that Graf is a ubiquitously expressed 95-kDa protein with high levels observed in heart and brain and cells derived from these tissues. Stimulation of PC12 cells with epidermal growth factor or nerve growth factor induced a phosphatase-reversible mobility shift upon gel electrophoresis, indicative of phosphorylation. In vitro, purified mitogen-activated protein (MAP) kinase catalyzed the phosphorylation of Graf on serine 510, suggesting that Graf phosphorylation may be mediated through MAP kinase signaling. In addition, the mutation of serine 510 to alanine inhibited the epidermal growth factor-induced mobility shift of mutant Graf protein in vivo, consistent with serine 510 being the site of in vivo phosphorylation. Based on these data we suggest that phosphorylation of Graf by MAP kinase or related kinases may be a mechanism by which growth factor signaling modulates Rho-mediated cytoskeletal changes in PC12 and perhaps other cells.  相似文献   

13.
Several recent studies have demonstrated that Grb2, composed entirely of SH2 and SH3 domains, serves as an adaptor protein in tyrosine kinase signaling pathways. Cb1, the protein product of c-cbl proto-oncogene, has been reported to be phosphorylated on tyrosine residues upon T cell receptor (TCR) engagement. Here we show that in unstimulated Jurkat cells Cbl is co-immunoprecipitated with monoclonal antibody against Grb2. However, in lymphocytes activated through the TCR, Cbl loses its ability to bind to Grb2 precipitated either with anti-Grb2 antibody or with an immobilized tyrosine phosphopeptide, Y1068-P, derived from the epidermal growth factor receptor. In vitro studies confirm that the ability of Cb1 to bind to both SH3 domains of Grb2 is strongly reduced in activated T lymphocytes. Investigation of the time course of Cbl dissociation from Grb2 reveals that it is transient and correlates with the kinetics of tyrosine phosphorylation of Cbl. Moreover, Cb1 is co-immunoprecipitated with Crk, another SH2/SH3 domain-containing protein, upon TCR stimulation. Tyrosine-phosphorylated Cbl binds exclusively to the SH2 domain of Crk. These results suggest that different adaptor proteins may have different roles in the regulation of c-cbl proto-oncogene product.  相似文献   

14.
Activation of the multicomponent interleukin-2 receptor (IL-2R) complex leads to a rapid increase in tyrosine phosphorylation of a number of cellular proteins including the IL-2R beta and IL-2R gamma chains of the IL-2R and the RAF-1 serine threonine kinase. In addition, phosphatidylinositol 3-kinase (PI-3K) protein and activity can be immunoprecipitated with anti-phosphotyrosine and anti-IL-2R beta antibodies from IL-2-activated but not resting T lymphocytes. We have demonstrated that the SH2 (SRC homology 2) domains of the 85 kDa subunit of PI-3K are sufficient to mediate binding of the PI-3K complex to tyrosine phosphorylated, but not non-phosphorylated IL-2R beta, suggesting that tyrosine phosphorylation is an integral component of the activation of PI-3K by the IL-2R. Since none of the members of the IL-2R complex contains an intrinsic tyrosine kinase domain, IL-2-induced tyrosine phosphorylation must be the consequence of activation of intracellular tyrosine kinases. SRC family members including lck, lyn and fyn have been demonstrated to associate with IL-2R beta through binding of the kinase domain to the acidic domain of IL-2R beta. However, we have demonstrated that the serine rich (SD) region of the cytosolic domain of IL-2R beta is also required for association of a tyrosine kinase with the IL-2R complex and that IL-2 can induce proliferation and tyrosine phosphorylation in cell lines which lack the known SRC family kinases expressed by T lymphocytes. Thus members of other kinase families besides SRC may also be involved in mediating IL-2 signal transduction. Biochemical studies and studies of cells expressing mutant IL-2 receptors indicate that IL-2-induced tyrosine kinase activation initiates a complex signaling cascade. The cascade includes SRC family kinase members such as lck, fyn, and lyn, activation of Raf-1 and PI-3K, and ras, and increased expression of the fos, fra-1, and jun protooncogenes. In addition, ligation of the IL-2R leads to rapid increases in myc expression and more delayed increases in the expression of the cdc2 and cdk2 kinases and the cyclins through a tyrosine phosphorylation independent pathway. Whether other biochemical processes initiated by IL-2R ligation, including activation of the MAP2, p70S6 and p90RSK serine threonine kinases, activation of NF-kappa B, and increased expression of Raf-1, Pim-1, bcl-2, IL-2R alpha and IL-2R beta, are consequences of the IL-2-induced tyrosine kinase cascade remains to be determined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Quiescent mammalian fibroblasts can be induced to reenter the cell cycle by growth factors and oncoproteins. We studied the pathway(s) through which v-Src, the oncogenic tyrosine kinase encoded by the v-src oncogene of Rous sarcoma virus, forces serum-starved NIH3T3 cells to enter S-phase. To this purpose, we isolated and characterized a polyclonal population of NIH3T3 cells transformed by the MR31 retroviral vector, encoding G418 resistance and the v-src temperature-sensitive allele from the mutant ts LA31 PR-A. NIH(MR31) cells displayed a temperature-conditional transformed phenotype and could be made quiescent by serum deprivation at the restrictive temperature. Serum stimulation or thermolabile v-Src reactivation induced entry into S-phase to a comparable extent, although with different kinetics. The data suggest that v-Src mitogenic activity involves early activation of the Erk1/Erk2 MAP kinases with very little tyrosine phosphorylation of the Shc adaptor proteins at least during the early stages of v-Src reactivation and that v-Src-induced S-phase entry was strongly inhibited by drugs affecting MEK or PI 3-kinase. Our results also suggest that down-regulation of gas1 gene expression plays an important role in regulating the efficiency of entry into S-phase triggered by reactivated v-Src and that Gas1 down-regulation does not require PI 3-kinase dependent signals.  相似文献   

16.
Insights into Src kinase functions: structural comparisons   总被引:1,自引:0,他引:1  
Recent structures of Src tyrosine kinases reveal complex mechanisms for regulation of enzymatic activity. The regulatory SH3 and SH2 domains bind to the back of the catalytic kinase domain via a linker region that joins the SH2 domain to the catalytic domain. Members of a subgroup of the Src kinase family show distinct features in this linker and in the loops that interact with it. Hydrophobicity of key residues in this region is important for intramolecular regulation. The kinases Abl, Btk and Csk seem to have the same molecular architecture as Src. Structural comparisons between serine/threonine and tyrosine kinases indicate a specific twisting mechanism involving the N- and C-terminal lobes of the catalytic domain. This motion could provide insights into the various mechanisms used to regulate kinase activity.  相似文献   

17.
18.
Mechanism of activation of Pak1 kinase by membrane localization   总被引:1,自引:0,他引:1  
Pak kinases are a family of serine/threonine protein kinases homologous to Ste20p of yeast. Paks can be activated in vivo and in vitro by binding to GTP-bound Cdc42 and Rac1, members of the Rho family of small GTPases implicated in regulating the organization of the actin cytoskeleton. We have previously reported that the SH2/SH3-containing adaptor protein Nck binds Pak kinase through its second SH3 domain. Pak1 can be targeted to the membrane by Nck in response to tyrosine phosphorylation, and membrane association of Pak1 is sufficient to increase its specific activity. The mechanism whereby Pak is activated by membrane localization, however, is unknown. We show here that expression of three proteins that inhibit Rho-family GTPases by different mechanisms (RhoGDI, Bcr and D57Y Cdc42) all block the activation of Pak by a membrane-targeted Nck SH3 domain, demonstrating that the in vivo activation of Pak1 induced by membrane localization is dependent on Rho-family GTPases. This implies that Pak activity can be regulated in cells both by the level of GTP loading of various Rho-family GTPases and the local concentration of Pak relative to these GTPases. Our data also suggest the existence of Rho-family GTPases in addition to Cdc42 and Rac1 that can activate Pak on membranes.  相似文献   

19.
The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an "unregulated" mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance.  相似文献   

20.
Serine and threonine phosphorylation has been shown to down-regulate insulin signaling at multiple steps, including the receptor and downstream molecules such as insulin receptor substrate-1 (IRS-1). To further address the mechanism of this regulation at the level of IRS-1, we constructed a double serine mutant of IRS-1: S662A/S731A-IRS-1. The serines 662 and 731 mutated to alanine are surrounding tyrosines Y658 and Y727, respectively. These tyrosines are comprised in YXXM motifs, which are potential binding sites for the p85alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase. In a first series of experiments using the yeast two-hybrid system, we show that IRS-1 interacts with p85alpha, and this interaction depends on tyrosine phosphorylation, as shown with the IRS-1 mutant F18 and 3Y-IRS-1. F18-IRS-1 contains 18 potential tyrosine phosphorylation sites mutated to phenylalanine; three of them, i.e. Y608, 628, and 658, which are potential binding sites for p85alpha, have been added back in the 3Y-IRS-1 mutant. The tyrosine phosphorylation of IRS-1, which is required for the interaction with p85alpha, is thought to occur via endogenous yeast kinases that phosphorylate IRS-1 at least on these PI 3-kinase-binding sites. Next, we show that not only p85alpha but also p55PIK, another regulatory subunit of PI 3-kinase, interacts with IRS-1 in yeast. Interestingly, for both regulatory subunits their interaction with IRS-1 is up-regulated by mutating serines 662 and 731 on IRS-1. In a previous study we found that insulin-stimulated PI 3-kinase activity was increased not only in the presence of S662A/S731A-IRS-1 but also under resting conditions compared with the activity seen with WT-IRS-1. Here we demonstrate in 293-EBNA cells overexpressing S662A/S731A-IRS-1 that insulin-stimulated protein kinase B activity is not augmented, whereas without insulin treatment, basal activity is increased compared with that in cells overexpressing wild-type IRS-1. In conclusion, we have shown that 1) potential serine phosphorylation sites on IRS-1, which are adjacent to YXXM binding motifs for PI 3-kinase, negatively regulate binding of IRS-1 to PI 3-kinase regulatory subunits; and 2) these modulations affect protein kinase B activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号