首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A first principles-based model was developed for a transcritical CO2 gas cooler, using a finite element method. The model uses published correlations for refrigerant and airside heat transfer and pressure drop. Experimental results are presented at 48 operating conditions. The model predicted the gas cooler capacity within ±2% and pressure drop on the R-744 side well within the range of experimental error. The model's usefulness is demonstrated by analyzing alternative circuiting and multi-slab designs.  相似文献   

2.
Outside (refrigerant) boiling coefficients for a combination of spray and drip boiling for a low pressure refrigerant have been obtained from overall heat transfer coefficients in a 1024 fins per meter tube bundle segment. The tubes were heated by water on the inside; liquid refrigerant was sprayed and/or dripped on the outside. Also, refrigerant vapor was supplied at the bottom of the bundle segment. This configuration simulates an actual flooded evaporator under spray boiling conditions. The dripping corresponds to liquid film falling from upper rows while the inlet vapor is equivalent to the vaporized refrigerant rising from lower tubes; the refrigerant vapor can influence heat transfer performance by the combined effects of gas convection and liquid shear on the tubes. For a nominal heat flux of 23,975 W/m2, a bundle average outside heat transfer coefficient of 8522 W/m2 °C, based on nominal tube outer diameter, was found at an average bundle vapor mass flux equal to 12.4 kg/s m2. The distributor plate below the bundle enhanced the heat transfer, especially at lower vapor mass fluxes, by providing a level of liquid hold-up just below the bottom tube row.  相似文献   

3.
A plate-type evaporator, working with natural refrigerant circulation, has been investigated both experimentally and theoretically. Motivated by the phase-out of ozone-depleting substances, HCFC22 was compared to HFC134a and two zeotropic refrigerant mixtures. The effect of different separator liquid levels, i.e. refrigerant flows, and its influence on heat transfer was also studied. The investigated plate-type evaporator consists of thirteen vertical flow channels and its size is 3.0 m × 0.5 m. The heat source for the evaporator is a falling water film on the outside of the plate. Experimental studies have been carried out using a test facility that enabled detailed measurements of heat transfer and pressure drop. Experiments were compared to results from a calculation method that simultaneously calculates heat transfer and pressure drop in a variable number of steps along the evaporator. The calculation method is based on a pressure drop correlation proposed by the VDI-Wärmeatlas and a heat transfer correlation for vertical tubes proposed by Steiner and Taborek. For different evaporator duties, heat transfer was over predicted by 12% for pure fluids by 15% for mixtures. Calculated pressure drops were well within ±5% of the measured values. Changes in heat transfer due to different flows were closely predicted by the proposed calculation method.  相似文献   

4.
Heat transfer coefficient and pressure drop were measured for condensation and evaporation of R410A and HCFC22 inside internally grooved tubes. The experiments were performed for a conventional spiral groove tube of 8.01 mm o.d. and 7.30 mm mean i.d., and a herring-born groove tube of 8.00 mm o.d. and 7.24 mm mean i.d. To measure the local heat transfer coefficients and pressure drop, the test section was subdivided into four small sections having 2 m working length. The ranges of refrigerant mass flow density was from 200 to 340 kg/(m2 s) for both condensation and evaporation of R410A and HCFC22, and the vapour pressure was 2.41 MPa for condensation and 1.09 MPa for the evaporation of R410A. The obtained heat transfer data for R410A and HCFC22 indicate that the values of the local heat transfer coefficients of the herring-bone grooved tube are about twice as large as those of spiral one for condensation and are slightly larger than those of spiral one for the evaporation. The measured local pressure drop in both condensation and evaporation is well correlated with the empirical equation proposed by the authors.  相似文献   

5.
This paper presents the experimental heat transfer coefficients and pressure drop measured during refrigerant R134a vaporisation inside a small brazed plate heat exchanger (BPHE): the effects of heat flux, refrigerant mass flux, saturation temperature and outlet conditions are investigated. The BPHE tested consists of 10 plates, 72 mm in width and 310 mm in length, which present a macro-scale herringbone corrugation with an inclination angle of 65° and corrugation amplitude of 2 mm.The experimental results are reported in terms of refrigerant side heat transfer coefficients and frictional pressure drop. The heat transfer coefficients show great sensitivity both to heat flux and outlet conditions and weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow.The experimental heat transfer coefficients are also compared with two well-known correlations for nucleate pool boiling and a correlation for frictional pressure drop is proposed.  相似文献   

6.
The objective of this study is to provide experimental data that can be used in the optimal design of flat plate finned-tube heat exchangers with large fin pitch. In this study, 22 heat exchangers were tested with a variation of fin pitch, number of tube row, and tube alignment. The air-side heat transfer coefficient decreased with a reduction of the fin pitch and an increase of the number of tube row. The reduction in the heat transfer coefficient of the four-row heat exchanger coil was approximately 10% as the fin pitch decreased from 15.0 to 7.5 mm over the Reynolds number range of 500–900 that was calculated based on the tube diameter. For all fin pitches, the heat transfer coefficient decreased as the number of tube row increased from 1 to 4. The staggered tube alignment improved heat transfer performance more than 10% compared to the inline tube alignment. A heat transfer correlation was developed from the measured data for flat plate finned-tubes with large fin pitch. The correlation yielded good predictions of the measured data with mean deviations of 3.8 and 6.2% for the inline and staggered tube alignment, respectively.  相似文献   

7.
Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m−2 s−1 and a quality range from approximately 10–80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18° helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile.  相似文献   

8.
Flow boiling heat transfer coefficient, pressure drop, and flow pattern are investigated in the horizontal smooth tube of 6.1 mm inner diameter for CO2, R410A, and R22. Flow boiling heat transfer coefficients are measured at the constant wall temperature conditions, while pressure drop measurement and flow visualization are carried out at adiabatic conditions. This research is performed at evaporation temperatures of −15 and −30 °C, mass flux from 100 to 400 kg m−2 s−1, and heat flux from 5 to 15 kW m−2 for vapor qualities ranging from 0.1 to 0.8. The measured R410A heat transfer coefficients are compared to other published data. The comparison of heat transfer coefficients for CO2, R410A, and R22 is presented at various heat fluxes, mass fluxes, and evaporation temperatures. The difference of coefficients for each refrigerant is explained with the Gungor and Winterton [K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transfer 29 (1986) 351–358] correlation based on the thermophysical properties of refrigerants. The Wattelet et al. [J.P. Wattelet, J.C. Chato, B.R. Christoffersen, J.A. Gaibel, M. Ponchner, P.J. Kenny, R.L. Shimon, T.C. Villaneuva, N.L. Rhines, K.A. Sweeney, D.G. Allen, T.T. Heshberger, Heat Transfer Flow Regimes of Refrigerants in a Horizontal-tube Evaporator, ACRC TR-55, University of Illinois at Urbana-Champaign, 1994], and Gungor and Winterton [K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transfer 29 (1986) 351–358] correlations give the best agreement with the measured heat transfer coefficients for CO2 and R410A. Pressure drop for CO2, R410A, and R22 at various mass fluxes, evaporation temperatures and qualities is presented in this paper. The Müller-Steinhagen and Heck [H. Müller-Steinhagen, K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes, Chem. Eng. Process. 20 (1986) 297–308], and Friedel [L. Friedel, Improved friction pressure correlations for horizontal and vertical two-phase pipe flow, in: The European Two-Phase Flow Group Meeting, Ispra, Italy, 1979 (paper E2)] correlation can predict most of the measured pressure drop within the range of ±30%. The relation between pressure drop and properties for each refrigerant is described by applying the Müller-Steinhagen and Heck correlation. The observed two-phase flow patterns for CO2 and R410A are presented and compared with flow pattern maps. Most of the flow patterns can be determined by the Weisman et al. [J. Weisman, D. Duncan, J. Gibson, T. Crawford, Effect of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines, Int. J. Multiphase Flow 5 (1979) 437–462] flow pattern map.  相似文献   

9.
This paper describes an experimental study on the convective heat transfer inside the scroll compressor. An experimental refrigeration system is composed with extensive instrumentations in the compressor that is operated at variable speeds. The 13 thermocouples installed inside the compressor monitor the temperatures of the scroll wrap during compression process of refrigerant. The temperature and the pressure of refrigerant at suction, and the pressure at discharge ports are measured, and applied to the numerical simulation as the operating condition parameters. The temperature measured at the discharge port is used to verify the simulation result with relevant heat transfer coefficient. This paper describes the effect of motion of the orbiting scroll on the convective heat transfer in the scroll wraps. Separate experiments are performed to investigate the heat transfer in such a peculiar physical condition. With this experimental result, the effect of the oscillation of the wall on the heat transfer is quantitatively analyzed and applied to the simulation of compression process in scroll compressor. The whole consecutive compression processes in the scroll compressor is simulated in detail by solving equations of mass and energy balance for the refrigerant. The modified heat transfer coefficient correlation considering the effect of motion of the orbiting scroll predicts the discharge temperature better than other typical heat transfer coefficients.  相似文献   

10.
In the present study, the local characteristics of pressure drop and heat transfer are investigated experimentally for the condensation of pure refrigerant R134a in two kinds of 865 mm long multi-port extruded tubes having eight channels in 1.11 mm hydraulic diameter and 19 channels in 0.80 mm hydraulic diameter. The pressure drop is measured at an interval of 191 mm through small pressure measuring ports. The local heat transfer rate is measured in every subsection of 75 mm in effective cooling length using heat flux sensors. It is found that the experimental data of frictional pressure drop agree with the correlation of Mishima and Hibiki [Trans. JMSE (B) 61 (1995) 99], while the correlations of Chisholm and Laird [Trans. ASME 80 (1958) 227], Soliman et al. [Trans. ASME, Ser. C 90 (1998) 267], and Haraguchi et al. [Trans. JSME (B) 60 (1994) 239], overpredict. As a trial, the data of local heat transfer coefficient are also compared with correlations of Moser et al. [J. Heat Transfer 120 (1998) 410] and Haraguchi et al. [Trans. JSME (B) 60 (1994) 245]. The data of high mass velocity agree with the correlation of Moser et al., while those of low mass velocity show different trends. The correlation of Haraguchi et al. shows the trend similar to the data when the shear stress in their correlation is estimated using the correlation of Mishima and Hibiki.  相似文献   

11.
A new way to assess the performance of refrigeration system models is presented in this paper, based on the estimation of cycle parameters, such as the evaporation temperature which will determine the validity of the method. This paper is the first of a series which will also study the influence of the heat transfer coefficient models on the estimation of the refrigeration cycle parameters. It focuses on fin and tube evaporators and includes the dehumidification process of humid air. The flow through the heat exchanger is considered to be steady and the refrigerant flow inside the tubes is considered one-dimensional. The evaporator model is discretised in cells where 1D mass, momentum and energy conservation equations are solved by using an iterative procedure called SEWTLE. This procedure is based on decoupling the calculation of the fluid flows from each other assuming that the tube temperature field is known at each fluid iteration. Special attention is paid to the correlations utilised for the evaluation of heat transfer coefficients as well as the friction factor on the air and on the refrigerant side. A comparison between calculated values and measured results is made on the basis of the evaporation temperature. The experimental results used in this work correspond to an air-to-water heat pump and have been obtained by using R-22 and R-290 as refrigerants.  相似文献   

12.
This paper presents an overview of the flow boiling heat transfer characteristics and the special thermo-physical properties of CO2 at low temperatures (down to −30 °C). Subsequently, the boiling heat transfer of CO2 at low temperatures is experimentally investigated in a horizontal tube with inner diameter of 4.57 mm. Due to the large surface tension, the boiling heat transfer coefficient of CO2 is found to be much lower at low temperatures but it increases with vapour quality (until dryout), which is contrary to the trend at high temperatures around 0 °C. None of the empirical correlations from open literature were able to predict the boiling heat transfer coefficient for CO2 in good agreement with the experimental data, suggesting the need for further research in this area.  相似文献   

13.
This paper describes the influence of a low viscosity polyolester based lubricating oil on the pool boiling heat transfer of the refrigerant R507. The pool boiling heat transfer coefficients for this refrigerant–oil mixture are measured on a smooth tube and on an enhanced tube. The investigation is made for oil mass fractions up to 10% and for saturation temperatures between −28.6°C and +20.1°C. For the smooth tube the heat transfer increases for increasing oil mass fractions up to 3% at lower saturation temperatures. At higher saturation temperatures the heat transfer decreases for increasing oil mass fractions for both tubes. For oil mass fractions greater than 1% at the higher saturation temperatures a range of decreasing heat transfer coefficient is found for increasing heat flux. The effect is caused by the different miscibility of the oil and the components of the refrigerant mixture.  相似文献   

14.
This paper presents an overview of the issues and new results for in-tube condensation of ammonia in horizontal round tubes. A new empirical correlation is presented based on measured NH3 in-tube condensation heat transfer and pressure drop by Komandiwirya et al. [Komandiwirya, H.B., Hrnjak, P.S., Newell, T.A., 2005. An experimental investigation of pressure drop and heat transfer in an in-tube condensation system of ammonia with and without miscible oil in smooth and enhanced tubes. ACRC CR-54, University of Illinois at Urbana-Champaign] in an 8.1 mm aluminum tube at a saturation temperature of 35 °C, and for a mass flux range of 20–270 kg m−2 s−1. Most correlations overpredict these measured NH3 heat transfer coefficients, up to 300%. The reasons are attributed to difference in thermophysical properties of ammonia compared to other refrigerants used in generation and validation of the correlations. Based on the conventional correlations, thermophysical properties of ammonia, and measured heat transfer coefficients, a new correlation was developed which can predict most of the measured values within ±20%. Measured NH3 pressure drop is shown and discussed. Two separated flow models are shown to predict the pressure drop relatively well at pressure drop higher than 1 kPa m−1, while a homogeneous model yields acceptable values at pressure drop less than 1 kPa m−1. The pressure drop mechanism and prediction accuracy are explained though the use of flow patterns.  相似文献   

15.
Effects of fin height and helix angle on condensation inside a herringbone microfin tube have been experimentally investigated with five types of herringbone microfin tubes. Heat transfer coefficients are about 2–4 times higher than that of the helical microfin tube under high mass velocity conditions. In the low mass velocity, they are equal to that of the helical microfin tube. The heat transfer enhancement increases with fin height up to 0.18 mm; higher fin heights show enhancement values similar to the 0.18 mm results. Pressure drop increases with the fin height. Larger helix angle yields higher heat transfer and higher pressure drop. For the lowest fin and/or smallest helix angle, the pressure drop is comparable with that of the helical microfin tube, while the heat transfer enhancement is higher. The enhancement mechanism is discussed from flow pattern observations. Effect of mass transfer resistance for R410A is estimated and negligible effects have been proved.  相似文献   

16.
This paper outlines the framework of a semi-theoretical model for predicting the pool boiling heat transfer of refrigerant/lubricant mixtures on a roughened, horizontal, flat pool-boiling surface. The predictive model is based on the mechanisms involved in the formation of the lubricant excess layer that exists on the heat transfer surface. The lubricant accumulates on the surface in excess of the bulk concentration via preferential evaporation of the refrigerant from the bulk refrigerant/lubricant mixture. As a result, excess lubricant resides in a thin layer on the surface and influences the boiling performance, giving either an enhancement or degradation in heat transfer. A dimensionless excess layer parameter and a thermal boundary layer constant were derived and fitted to data in an attempt to generalize the model to other refrigerant/lubricant mixtures. The model inputs include transport and thermodynamic refrigerant properties and the lubricant composition, viscosity, and critical solution temperature with the refrigerant. The model predicts the boiling heat transfer coefficient of three different mixtures of R123 and lubricant to within ±10%. Comparisons of heat transfer predictions to measurements for 13 different refrigerant/lubricant mixtures were made, including two different refrigerants and three different lubricants.  相似文献   

17.
A CO2 heat pump system using recovered heat from the stack coolant was provided for use in fuel cell vehicles, where the high temperature heat source like in internal combustion engine vehicles is not available. The refrigerant loop consists of an electric drive compressor, a cabin heater, an outdoor evaporator, an internal heat exchanger, an expansion valve and an accumulator. The performance characteristics of the heat pump system were investigated and analyzed by experiments. The results of heating experiments were discussed for the purpose of the development and efficiency improvement of a CO2 heat pump system, when recovering stack exhaust heat in fuel cell vehicles. A heater core using stack coolant was placed upstream of a cabin heater to preheat incoming air to the cabin heater. The performance of the heat pump system with heater core was compared with that of the conventional heating system with heater core and that of the heat pump system without heater core, and the heat pump system with heater core showed the best performance of the selected heating systems. Furthermore, the coolant to air heat pump system with heater core showed a significantly better performance than the air to air heat pump system with heater core.  相似文献   

18.
Simulation analyses for a vapour compression heat pump cycle using nonazeotropic refrigerant mixtures (NARMs) of R22 and R114 are conducted under the condition that the heat pump thermal output and the flow rate and inlet temperatures of the heat sink and source water are given. The heat transfer coefficients of the condensation and evaporation are calculated with empirical correlations proposed by the authors. The validity of the evaluation method and the correlations is demonstrated by comparison with experimental data. The relations between the coefficient of performance (COP) and composition are shown under two conditions: (1) the constant heat transfer length of the condenser and evaporator; and (2) the constant temperature of refrigerant at the heat exchanger inlet. The COP of the NARMs is higher than that of pure refrigerant when the heat transfer lengths of the condenser and evaporator are sufficiently long.  相似文献   

19.
In this research, the cooling heat transfer coefficient and pressure drop of supercritical CO2 with PAG-type lubricating oil entrained were experimentally investigated. The inner diameter of the test tubes ranged from 1 to 6 mm. The experiments were conducted at lubricating oil concentrations from 0 to 5%, pressures from 8 to 10 MPa, mass fluxes from 200 to 1200 kg m−2 s−1, and heat fluxes from 12 to 24 kW m−2.In comparison to the oil-free condition, when lubricating oil entrainment occurred, the heat transfer coefficient decreased and the pressure drop increased. The maximum reduction in the heat transfer coefficients—about 75%—occurred in the vicinity of the pseudocritical temperature. The influence of oil was significant for a small tube diameter and a large oil concentration. From visual observation, it was confirmed that this degradation in the heat transfer was due to the formation of an oil-rich layer along the inner wall of the test tube. However, when the oil concentration exceeded 3%, no further degradation in the heat transfer coefficient could be confirmed, which implies that the oil flowing along with CO2 in the bulk region does not influence the heat transfer coefficient and the pressure drops significantly. For a large tube at a lower mass flux, no significant degradation in the heat transfer coefficient was observed until the oil concentration reached 1%. This is due to the transition of the flow pattern from an annular-dispersed flow to a wavy flow for a large tube, with CO2 flowing on the upper side and the oil-rich layer on the lower side of the test section.  相似文献   

20.
Micro heat pumps, with dimensions in the order of centimetres, may in the future be utilised for the heating and/or cooling of buildings, vehicles, clothing, and other products or applications. A number of issues have yet to be solved, including the construction of a microscale compressor, and determination of micro heat exchanger heat transfer capacities. Test samples of micro heat exchangers and a corresponding test apparatus have been built. Some two-phase experiments with propane (R-290) as refrigerant have been conducted. Preliminary results for a micro condenser with 0.5 mm wide trapezoidal channels of 25 mm length showed that a heat flux of up to 135 kW/m2, based on the refrigerant-side area, was attainable. The corresponding overall heat transfer coefficient was 10 kW/(m2 K), with a refrigerant mass flux of 165 kg/(m2 s) and a refrigerant-side pressure drop of 180 kPa/m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号