首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
根据某特种车辆的悬架控制臂的性能设计要求和实际工况分析,研制了一种新型低合金铸钢ZG20CrMnSiNi2Mo。通过金相分析、XRD物相分析、扫描电镜分析和力学性能检测研究了960℃正火处理、不同温度回火对ZG20CrMnSiNi2Mo组织和性能的影响,结果表明:960℃正火处理、250℃以下进行回火处理后试验材料具有较好的综合力学性能,材料的各项性能满足某型号特种车辆悬架控制臂的性能设计要求。分析了不同温度回火后,ZG20CrMnSiNi2Mo组织和性能变化的原因。  相似文献   

2.
研究了淬火温度和回火温度对ZG310-510铸钢组织和力学性能的影响.结果表明,随着淬火温度的提高,ZG310-510钢的强度、硬度和冲击韧度提高,淬火温度为1000℃达到峰值.1000℃淬火、200或600℃回火,铸钢具有良好的强韧性,200℃回火的组织为回火马氏体组织和少量残余奥氏体,600℃回火的组织主要为索氏体组织.400℃回火出现回火脆性,材料的冲击韧度最低.提出了提高ZG310-510铸钢的强韧性的热处理工艺:1000℃淬火 200/600℃回火.  相似文献   

3.
正火及回火温度对ZG310-570铸钢组织和性能的影响   总被引:2,自引:0,他引:2  
程巨强  刘志学  高洁 《铸造》2007,56(10):1086-1088
研究了正火温度和回火温度对ZG310-570铸钢组织和力学性能的影响。结果表明,奥氏体化加热温度在1000℃以下,随着加热温度的提高,ZG310-570铸钢的强度、硬度和冲击韧度提高,1000℃加热力学性能达到峰值。超过1000℃加热,ZG310-570铸钢的强度、硬度和冲击韧度下降。1000℃正火、200℃或600℃回火,铸钢具有良好的强韧性,400℃和550℃回火,出现回火脆性,冲击韧度值最低。1000℃以下加热正火,组织为铁素体、珠光体,超过1000℃加热正火,组织中出现贝氏体组织。讨论了提高ZG310-570铸钢的强韧性的热处理工艺。  相似文献   

4.
《铸造》2017,(11)
研究了淬火和回火温度对耐磨铸钢ZG30Mn2SiCr组织和力学性能的影响。结果表明:ZG30Mn2SiCr经860℃淬火和250℃回火热处理,材料具有最佳综合性能,硬度达到HRC 52、冲击功12 J、抗拉强度1739 MPa;回火后的组织主要为回火马氏体。使用该材料的农机深松铲使用寿命大幅度提高。  相似文献   

5.
ZG40CrSi2Mn3MoReTi铸钢组织与性能的研究   总被引:1,自引:0,他引:1  
刘志学  程巨强  王元辉 《铸造技术》2005,26(10):892-894
研究了ZG40CrSi2Mn3MoReTi铸钢不同热处理后的组织和性能,比较了不同介质中ZG40CrSi2Mn3MoReTi铸钢和高铬铸铁的耐磨性.结果表明,ZG40CrSi2Mn3MoReTi铸钢的组织由贝氏体铁素体和残余奥氏体组成,属新型贝氏体组织,在960℃~1 040℃正火、250℃~300℃回火后具有较高的强度和韧性;与高铬铸铁相比,在酸性介质中具有良好的耐磨性.  相似文献   

6.
介绍了无碳化物贝氏体耐磨铸钢的合金化设计,研究了铸造无碳化物贝氏体耐磨钢热处理的组织和性能.铸造无碳化物耐磨钢正火低温回火热处理组织由贝氏体铁素体和奥氏体组成,属于非典型贝氏体或无碳化物贝氏体或奥氏体-贝氏体复相组织,淬火低温回火热处理组织由马氏体和残余奥氏体组成,属于马氏体-奥氏体复相组织.结果表明:铸造无碳化物贝氏体耐磨钢正火或淬火后低温回火,材料具有高的强度、高的韧性和高的耐磨性,低碳铸造无碳化物贝氏体耐磨钢具有良好的焊接性能.并介绍了铸造无碳化物贝氏体耐磨钢在矿山机械方面的应用.  相似文献   

7.
研究了ZGCr28高铬铸钢的铸态、不同温度正火和不同温度回火热处理的组织和性能。结果表明,ZGCr28铸态硬度较低,正火加热温度为1 040℃时空冷铸件具有较高的硬度,100~200℃回火高铬铸钢具有良好的韧性,铸态和热处理后的组织为铁素体、(Fe.Cr)23C6碳化物和少量的残余奥氏体。提出了ZGCr28高铬铸钢的最佳热处理工艺。  相似文献   

8.
程巨强  刘志学 《铸造》2006,55(12):1232-1234,1238
研究了无碳化物贝氏体耐磨铸钢材料的组织、力学性能和耐磨性能。结果表明。热处理采取960-1000℃正火、250-350℃回火。铸钢的组织为贝氏体铁素体和奥氏体组成.为无碳化物贝氏体组织,具有良好的强度和冲击韧度。在450℃回火,出现贝氏体回火脆性,发生贝氏体铁豪体和奥氏体钼织的分解。冲击韧度最低。与几种进口铲齿材料耐磨性试验对比说明,无碳化物贝氏体铸钢铲齿具有良好的耐磨性能。可作为一种新型的铲齿材料,并介绍了奥氏体-贝氏体耐磨材料的实际应用情况。  相似文献   

9.
ZG30CrMnSiMo铸钢热处理工艺的研究   总被引:1,自引:1,他引:0  
研究了不同的奥氏体化温度、不同的淬火介质、不同回火温度对ZG30CrMnSiMo的力学性能及组织的影响。结果表明,ZG30CrMnSiMo经1040℃奥氏体化油冷,300℃回火后,具有良好的强韧性配合,而在500℃回火时,出现明显的回火脆性。提出ZG30CrMnSiMo的最佳热处理工艺。  相似文献   

10.
通过组织观察、力学性能检测和磨损实验,对比研究了洗煤生产过程中齿辊式破碎机的国内4种常用齿板材料的组织和性能。结果表明,进口齿板材料的组织由板条马氏体和6.13%的残余奥氏体组成;高锰钢齿板的组织为单相奥氏体组织;ZG32CrMnSiNi2Mo齿板的组织由贝氏体铁素体板条和13.18%残余奥氏体组成;ZG22CrMnSiNiMo齿板为粒状贝氏体组织,组织中条型M-A岛比例较多,残余奥氏体量为14.9%。940℃淬火+200℃回火后,进口齿板材料具有最优的综合性能,硬度和冲击韧性分别为44.1 HRC和34.5 J;高锰钢齿板水韧处理后平均硬度为216.5 HB,冲击韧度为113.8 J;ZG32CrMnSiNi2Mo齿板900~940℃正火处理后,冲击韧度值略低于进口齿板的供货状态,但硬度高于进口齿板;960~1000℃正火处理后,ZG22CrMnSiNiMo齿板硬度略低于进口齿板材料,冲击韧度略高于进口齿板材料。选取进口齿板材料供货状态为标准,高锰钢齿板材料的相对耐磨性较低,仅为0.76;ZG32CrMnSiNi2Mo齿板材料经900~980℃正火处理后,耐磨性能较好,相对耐磨性为1.19~1.23;ZG22CrMnSiNiMo齿板材料经920~1000℃正火处理,耐磨性能介于进口齿板材料和ZG32CrMnSiNi2Mo齿板材料之间,相对耐磨性为1.10~1.13。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号