首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The present study explores the degradation of azo dye (Congo red) by catalytic wet peroxide oxidation using Fe exchanged commercial Y zeolite as a catalyst. The effects of various operating parameters like temperature, initial pH, hydrogen peroxide concentration and catalyst loading on the removal of dye, color and COD from an aqueous solution were studied at atmospheric pressure. The percent removals of dye, color and COD at optimum pH0 7, 90 °C using 0.6 ml H2O2/350 ml solution and 1 g/l catalyst was 97% (in 4 h), 100% (in 45 min) and 58% (in 4 h), respectively. The % dye removal has been found to be less in comparison to % color removal at all conditions, e.g. dye removal in 45 min and at above conditions was 82%, whereas the color removal was 100%. The results indicate that the Fe exchanged Y zeolite is a promising catalyst for dye removal. Fe exchanged catalyst is characterized using XRD, SEM/EDAX, surface area analyzer and FTIR. Though the dye, color and COD removals were maximum at pH0 2 but as the leaching of Fe from the catalyst was more in acidic pH range, pH0 7 was taken as operating pH due to almost comparable removals as of pH0 2 and no leaching of Fe ions.  相似文献   

2.
Copper hydroxide nitrate (Cu(2)(OH)(3)NO(3)) was synthesized solvothermally in anhydrous ethanol and characterized by XRD, FTIR, TG-DTA and SEM. The peroxide degradation of an azo dye (Direct Blue 15) on this material was evaluated by examining catalyst loading, initial pH, hydrogen peroxide dosage, initial dye concentration and temperature. The leaching of Cu from the copper hydroxide nitrate during the reaction was also measured. The copper hydroxide nitrate synthesized solvothermally, which was of a novel spherical morphology with complex secondary structures and contained high-dispersed Cu(2)O impurity, showed good performance for oxidation degradation of the azo dye, especially high catalytic activity, high utilization of hydrogen peroxide and a wide pH range, whereas the copper hydroxide nitrate synthesized by the direct reaction of copper nitrate and sodium hydroxide showed low catalytic activity.  相似文献   

3.
An advanced oxidation process, UV/H2O2, was applied for decolorization of a di-azo dye (acid black 1). The effects of operating parameters such as hydrogen peroxide dosage, UV dosage and initial dye concentration, on decolorization have been evaluated. The acid black 1 solution was completely decolorized under optimal hydrogen peroxide dosage of 21.24 mmol/l and UV dosage of 1400 W/l in less than 1.2 min. The decolorization rate followed pseudo-first order kinetics with respect to the dye concentration. The rate increased linearly with volumetric UV dosage and nonlinearly with increasing initial hydrogen peroxide concentration. It has been found that the degradation rate increased until an optimum of hydrogen peroxide dosage, beyond which the reagent exerted an inhibitory effect. For real case application, an operation parameter plot of rate constant was developed. To evaluate the electric power and hydrogen peroxide consumption by UV/H2O2 reactor, 90% color removal was set as criteria to find the balance between both factors.  相似文献   

4.
In the present study, Graphene Vanadic Acid (GVA) is introduced as a novel catalyst for high-efficiency hydroxylation of benzene to phenol using hydrogen peroxide at ambient conditions. Graphene oxide as a famous carbon support has converted to a high-performance catalyst through the functionalization using vanadium oxytrichloride (VOCl3). This new carbon compound is regarded as the efficient catalyst due to the prominent advantages such as high-recativity and reusability, facile preparation, active Lewis and Bronsted acid sites, high potential for development of various oxidation reactions, and high thermal, chemical, and physical stability due to the regular carbon structure. GVA progressed the benzene oxidation toward the phenol formation as a useful raw material. Cause of the considerable reactivity of the synthesized catalyst, a minimum amount of hydrogen peroxide was required and the benzene oxidation carried out using an equimolar ratio of benzene/H2O2, and phenol obtained with a remarkable yield (28.2%) as the sole product.  相似文献   

5.
This paper presents an original approach to the removal of phenol in synthetic wastewater by catalytic wet peroxide oxidation with copper binding activated carbon (CuAC) catalysts. The characteristics and oxidation performance of CuAC in the wet hydrogen peroxide catalytic oxidation of phenol were studied in a batch reactor at 80 °C. Complete conversion of the oxidant, hydrogen peroxide, was observed with CuAC catalyst in 20 min oxidation, and a highly efficient phenol removal and chemical oxygen demand (COD) abatement were achieved in the first 30 min. The good oxidation performance of CuAC catalyst was contributed to the activity enhancement of copper oxide, which was binding in the carbon matrix. It can be concluded that the efficiency of oxidation dominated by the residual H2O2 in this study. An over 90% COD removal was achieved by using the multiple-step addition in this catalytic oxidation.  相似文献   

6.
In this paper, photocatalytic degradation studies of a hazardous water soluble xanthene dye cyanosine in aqueous suspensions of titanium dioxide under a variety of conditions, viz., catalyst concentration, substrate concentration, pH, temperature and electron acceptor hydrogen peroxide (H2O2) have been reported. It was observed that photocatalytic degradation by TiO2 is an effective, economic and faster mode of removing cyanosine from aqueous solution. The optimum conditions for the degradation of the dye was dye concentration 1x10(-4)M, pH 8, catalyst concentration 0.04g/L and temperature +/-30 degrees C. Chemical oxygen demand and dye absorbance of the photodegraded dye solution substantially decreased.  相似文献   

7.
In this study, the successful decolorization and mineralization of phthalocyanine dye (C.I. Direct Blue 199, DB 199) by an advanced oxidation process (AOP), UV/H2O2, were observed while the experimental variables such as hydrogen peroxide dosage, UV dosage, initial dye concentration and pH were evaluated. The operating conditions for 90% decolorization of C.I. DB 199 and 74% removal of total organic carbon (TOC) were obtained for initial dye concentration of 20 mgl(-1), hydrogen peroxide dosage of 116.32 mM, UV dosage of 560 W and pH of 8.9 in 30 min. The pseudo-first order rate constant is a linear function of reverse of initial dye concentration. They linearly increased by incrementing UV dosage, yet were non-linear enhancement by increasing the hydrogen peroxide concentration. A higher pseudo-first order rate constant about 0.15 min(-1) was observed while hydrogen peroxide concentration within 5.82-116.32 mM. Moreover, the decolorization of C.I. DB 199 was observed to be more difficult than that of an azo dye, C.I. Acid Black 1, under the same operating conditions.  相似文献   

8.
Photocatalytic degradation of Remazol Red F3B using ZnO catalyst   总被引:9,自引:0,他引:9  
The photocatalytic degradation of aqueous solution of a commercial azo-reactive textile dye, Remazol Red F3B, has been investigated in a batch slurry reactor, in the presence of ZnO catalyst using two different UV light sources emitting at 254 nm and 365 nm. The effects of various process variables on degradation performance of the process have been investigated. The results showed that decolourization and total organic carbon (TOC) removal are both affected in the same manner by the solution pH in the pH range 6-10, showing maxima at pH 7 and pH 10. They are inversely related to the dye concentration, they increase in power-law with the light intensity. Decolourization is faster with 365 nm UV. TOC removal is not affected by UV wavelength in the initial period up to 20 min, after which it progresses faster under 365 nm UV radiation. These results indicate that the UV wavelength influences especially the degradation rate of the intermediate products generated during the initial period of the photocatalytic process. Finally, catalyst loading affects both efficiencies in the same trend, which are maximized at about 2 g/l catalyst loading.  相似文献   

9.
The decolourization and mineralization of a solution of an azo dye using a catalyst based on Fe(II) supported on Y Zeolite (Fe(II)-Y Zeolite) and adding hydrogen peroxide (heterogeneous Fenton process) have been studied. The catalyst was prepared by ion exchange, starting from a commercial ultra-stable Y Zeolite. All experiments were performed on a laboratory scale set-up. The effects of different parameters such as initial concentration of the dye, initial pH of the solution of the dye, H(2)O(2) concentration, temperature and ratio of amount of catalyst by amount of solution on the decolourization efficiency of the process were investigated. A percentage of colour removal of 99.3±0.2% and a mineralization degree of 84±5% of the solution of the dye were achieved in only 6 min of contact time between the catalyst and the solution, under the following conditions: initial concentration of the dye of 50 ppm, pH 5.96, 8.7 mM of H(2)O(2), T of 80°C and catalyst concentration of 15 g/L. Moreover, the catalyst Fe(II)-Y Zeolite can be easily filtered from the solution, does not leach any iron into the solution (avoiding any secondary contamination due to the metal) and its effectivity can be reproduced after consecutive experiments.  相似文献   

10.
Manganese complex of meso-tetrakis(4-hydroxyphenyl)porphyrin immobilised onto functionalised multi-wall carbon nanotubes (MWCNT) has been synthesised and characterised by elemental analysis, Fourier transform infrared (FT-IR), ultraviolet-visible (UV-Vis) spectroscopy, powder X-ray diffraction and scanning electron microscopy. This catalyst, [Mn(THPP)OAc@MWCNT], was successfully applied for efficient epoxidation of alkenes and alkanes with urea–hydrogen peroxide. The role of the stoichiometric amounts of the acetic anhydride as an oxidant activator which introduce in situ peracetic acid has been discussed. This heterogeneous catalyst was highly reusable in the oxidation reactions and reused several times without significant loss of its catalytic activity.  相似文献   

11.
Epoxidation of allyl alcohol with 30 wt% hydrogen peroxide over Ti-MCM-41 catalyst under atmospheric pressure and in the presence of methanol as a solvent has been studied. The influence of the following parameters: temperature (20–60 °C), the molar ratio of AA/H2O2 (0.5–5), methanol concentration (5–90 wt%), catalyst concentration (0.1–5.0 wt%) and reaction time (5–180 min) has been investigated. The process has been described by the following functions: the selectivity of transformation to glycidol in relation to allyl alcohol consumed, conversions of the substrates and selectivity of transformation to organic compounds in relation to hydrogen peroxide consumed. The technological parameters, at which the functions describing the process take the optimum values, have been established.  相似文献   

12.
Epoxidation of 1-butene-3-ol (1B3O) with 30 wt% hydrogen peroxide over TS-2 catalyst has been studied with methanol as a solvent and at elevated pressure (autogenic). The influence of temperature in the range of 20-120 degrees C, the molar ratio of 1B3O/H(2)O(2) 1:1-5:1, methanol concentration 5-90 wt%, TS-2 catalyst concentration 0.1-5.0 wt% and the reaction time 0.5-5.0 h have been investigated. The process was described by the following functions: the selectivity of transformation to 1,2-epoxybutane-3-ol (1,2EB3) in relation to 1B3O consumed, the selectivity of transformation to organic compounds in relation to H(2)O(2) consumed and the conversions of 1B3O and hydrogen peroxide. The major product of epoxidation is 1,2EB3, a compound with many applications.  相似文献   

13.
Water contamination by organic substances such as dyes is of great concern worldwide due to their utilization in many industrial processes and environmental concerns. To cater the needs for waste water treatment polluted with organic dyes, laser-induced photocatalytic process was investigated for removal of a dye derivative namely Acid Red 87 using n-type WO3 semiconductor catalyst. The degradation was investigated in aqueous suspensions of tungsten oxide under different experimental conditions using laser instead of conventional UV lamp as an irradiation source. The degradation process was monitored by measuring the change in dye concentration as a function of laser irradiation time by employing UV spectroscopic analysis. The degradation of dye was studied by varying different parameters such as laser energy, reaction pH, substrate concentration, catalyst concentration, and in the presence of electron acceptors such as hydrogen peroxide (H2O2), and potassium bromate (KBrO3). The degradation rates were found to be strongly dependent on all the above-mentioned parameters. Our experimental results revealed that the dye degradation process was very fast (within few minutes) under laser irradiation as compared to conventional setups using broad spectral lamps (hours or days) and this laser-induced photocatalytic degradation method could be an effective means to eliminate the pollutants present in liquid phase. The experience gained through this study could be beneficial for treatment of waste water contaminated with organic dyes and other organic pollutants.  相似文献   

14.
The photocatalytic oxidative degradation of Reactive Black 5 (RB 5) has been investigated using TiO(2)-P25 as photocatalyst and sunlight as irradiation source in slurry form. The degradation was carried out at different experimental conditions to optimize the parameters such as amount of catalyst, concentration of dye and pH. A complete degradation of 3.85 x 10(-4) M dye solution under solar irradiation was observed in 3.5 h. The photochemical degradation using hydrogen peroxide results in the partial removal of the dye.  相似文献   

15.
The as-synthesized BiOCl nanoparticles were characterized by x-ray diffraction (XRD) and ultraviolet–visible (UV–Vis) techniques. The XRD pattern showed that a highly pure and crystalline phase has been obtained. The UV–vis diffuse reflectance spectroscopy (DRS) studies revealed the indirect band gap value of about 3.32 eV for the fabricated semiconductor. The disappearance of the dye, monitored spectrophotometrically, follows approximately pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. Besides, the effect of some parameters such as the influence of the initial pH, catalyst weight, initial dye concentration, oxidant concentration, and salt concentration on the degradation of malachite green dye solution under visible light irradiation were investigated. The optimum conditions for the degradation of dye were 25 mg L?1 dye concentration, pH of 8, and a catalyst amount of 0.7 g mL?1. The addition of an optimal amount of hydrogen peroxide and potassium persulfate increases the degradation rate while NaCl and Na2CO3 decrease the rate. Complete mineralization has been confirmed by UV–Vis spectroscopy  相似文献   

16.
The efficacy of the oxidation systems: O3, UV radiation, O3/UV radiation, O3/perovskite, UV radiation/perovskite, O3/UV radiation/perovskite, H2O2/UV radiation, H2O2/UV radiation/perovskite, has been investigated by using pyruvic acid as probe compound. Under the operating conditions used, the combination of UV radiation and hydrogen peroxide (with or without perovskites) leads to the fastest pyruvic acid removal while the best results in terms of mineralization degree are obtained when combining O3/UV radiation/perovskite. The effect of the variables: inlet ozone (15-75 mg L(-1)) and initial pyruvic acid (10(-3) to 10(-2)M) concentrations, catalyst load (0.01-1.5 g L(-1)) and pH (2-9) was investigated for the photocatalytic ozonation. The most influencing parameter was the ozone concentration fed to the photoreactor. A zero order was observed for pyruvic acid concentration and close to zero for catalyst load. Some deactivation is observed after reusing the catalyst, likely due to leaching of the active phase.  相似文献   

17.
To recycle the spent catalyst for the removal of VOCs, the benzene, toluene, and xylene (BTX) complete oxidations were studied over pretreated palladium based spent catalyst in a fixed bed flow reactor system at atmospheric pressure. Two different pretreatment methods with gas (air and hydrogen) and acid aqueous solution (HCl, H(2)SO(4), HNO(3), H(3)PO(4) and CH(3)COOH) were used to investigate the catalytic activity of spent catalyst. The properties of the spent and pretreated Pd based catalyst were characterized by XRD, BET, TEM, ICP, and XPS. The results of light-off curves indicate that the catalytic activity of toluene oxidation for pretreated samples is in the order of hydrogen>air>HNO(3)>CH(3)COOH>H(2)SO(4)>H(3)PO(4)>HCl. In addition, the air and the acid aqueous pretreated catalyst activities were significantly decreased compared to that of the spent (or parent) catalyst. Moreover, hydrogen pretreated (or reduced) catalysts having mainly metallic form show the best performance in removing the toluene vapours compared to other pretreated samples. The reduction temperature made a significant difference in the catalytic performance of the spent catalyst pretreated with hydrogen. XPS results clearly supported that the palladium state of the spent catalysts pretreated at 300 degrees C was shifted more toward metallic form than other reduced catalysts. Furthermore, the results of a long-term test and catalytic activity of aromatic hydrocarbons also supported that the hydrogen pretreated spent catalyst was a good candidate for removing toxic compounds.  相似文献   

18.
The photolysis and photo-catalysis of ferrioxalate in the presence of hydrogen peroxide with UV irradiation (UV/ferrioxalate/H(2)O(2) process) for treating the commercial azo dye, reactive Black B (RBB), is examined. An effort is made to decolorize textile effluents at near neutral pH for suitable discharge of waste water. pH value, light source, type of initial catalyst (Fe(3+) or Fe(2+)) and concentration of oxalic acid (Ox) strongly affected the RBB removal efficiency. The degradation rate of RBB increased as pH or the wavelength of light declined. The optimal molar ratio of oxalic acid to Fe(III) is three, and complete color removal is achieved at pH 5 in 2h of the reaction. Applying oxalate in such a photo process increases both the RBB removal efficiency and the COD removal from 68% and 21% to 99.8% and 71%, respectively.  相似文献   

19.
《Materials Letters》2006,60(17-18):2274-2277
A new heterogeneous oxidation catalyst was prepared by impregnation of TiO2 from titanium(IV)tetra-2-propoxide on the surface of ZrO2. The surfaces of TiO2–ZrO2 particles were then modified by the fluorination of ammonium hexafluorosilicate and followed by alkylsilylation of n-octadecyltrichlorosilane (OTS). The resulting catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption isotherm, UV–Vis Diffuse Reflectance (UV–Vis DR), and Energy Dispersive X-Ray Analysis (EDAX) techniques. The catalytic potential of catalysts for oxidation reactions has been verified in the liquid phase epoxidation of 1-octene to 1,2-epoxyoctane with aqueous hydrogen peroxide. It is demonstrated that the fluorination and alkylsilylation enhance the catalytic activity of TiO2–ZrO2. A high catalytic activity of the modified TiO2–ZrO2 was related to the modification of the local environment of titanium active site and increasing the hydrophobicity of catalyst particles by fluorination and alkylsilylation.  相似文献   

20.
Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives such as amaranth (1) and bismarck brown (2) has been investigated in aqueous suspension by monitoring the change in substrate concentration employing UV spectroscopic analysis technique as a function of irradiation time. The degradation was studied under different conditions such as types of TiO(2), pH, substrate concentration, catalyst concentration, and in the presence of electron acceptors such as hydrogen peroxide (H(2)O(2)), potassium bromate (KBrO(3)) and ammonium persulphate (NH(4))(2)S(2)O(8) besides air. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 showed comparatively highest photocatalytic activity. The dye derivative, bismarck brown (2) was found to degrade faster than amaranth dye (1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号