首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
CoMo/SBA-15-γ-Al2O3催化剂的加氢脱硫活性研究   总被引:1,自引:1,他引:0  
采用介孔分子筛SBA-15和γ-Al2O3制备混合载体SBA-15-γ-Al2O3,担载Co-Mo金属活性组分制备深度加氢脱硫催化剂CoMo/SBA-15-γ-Al2O3。BET表征结果表明,混合载体负载金属后仍然具有介孔材料的特性,表面积略有下降。以直馏柴油为原料,在固定床微型反应器上评价了该催化剂的加氢脱硫反应活性。结果表明,在催化剂CoO和MoO3的质量分数分别为5%和20%、反应温度360 ℃、反应压力6 MPa、氢油体积比600、体积空速2 h-1的条件下,柴油硫含量可由829 μg/g降至6 μg/g。  相似文献   

2.
将介孔分子筛SBA-15和γ-Al2O3通过机械混合制得混合载体,担载Mo-Ni-P活性组分,制备了直馏柴油加氢脱硫催化剂。在固定床反应器上,以直馏柴油为原料,对该催化剂进行加氢脱硫反应活性评价。结果表明,最佳加氢脱硫反应条件为:温度360℃,压力6.0 MPa,氢气/原料油(体积比)600,空速2.0 h-1。在此条件下,直馏柴油的脱硫率达到98.23%,总硫量由811μg/g降至16μg/g。  相似文献   

3.
《石油化工》2015,44(4):471
以柠檬酸为络合剂,制备了稳定的Co Mo浸渍液Co Mo-CA(CA表示柠檬酸),将其浸渍于γ-Al2O3载体上制备了免焙烧的Co Mo-CA/Al2O3催化剂,采用UV-Vis、FTIR、N2吸附-脱附、H2-TPR和HRTEM等手段对催化剂进行分析与表征;以直馏柴油为原料,在高压微反装置上评价了催化剂的加氢脱硫和加氢脱氮活性。实验结果表明,Co Mo-CA浸渍液中柠檬酸不能置换出[Co(H2O)6]2+中的水分子形成新的Co2+-柠檬酸配合物;柠檬酸与活性组分M o形成配合物,提高了溶液的稳定性。免焙烧的Co Mo-CA/Al2O3催化剂中活性组分Mo以金属配合物的形式存在,柠檬酸在硫化过程中逐步分解,有利于降低活性组分与载体的相互作用,Mo的硫化变慢,避免形成难硫化的Mo物种,有利于Ⅱ型Co-Mo-S活性相的形成。在所考察的评价条件范围内,免焙烧的Co Mo-CA/Al2O3催化剂的加氢活性优于焙烧后的催化剂。  相似文献   

4.
 摘要: 采用硫化态前驱物四硫代钼酸铵溶液浸渍载体 -Al2O3制备了硫化态NiMoS/ -Al2O3加氢精制催化剂,对催化剂进行了XRD和HRTEM表征,并以FCC柴油为原料,考察了催化剂的加氢精制性能。结果表明,该加氢催化剂的活性组分与载体 -Al2O3的相互作用较弱,不存在难以还原硫化的Mo-O-Al桥键,催化剂表面MoS2分散度较好,MoS2的晶粒较大,堆积层数较高,大部分MoS2以II型的NiMoS相存在;硫化态NiMoS/ -Al2O3加氢精制催化剂具有优于工业催化剂CK-2的HDS、HDN和HDAr性能。  相似文献   

5.
以γ-Al2O3为载体,采用等体积浸渍法分别制备了H2SO4,Ni(NO3)2,Ni(NO3)2-H2SO4,NiSO4改性的加氢脱硫催化剂。采用X射线衍射、N2吸附-脱附、H2-程序升温还原、紫外-拉曼光谱、X射线光电子能谱和反应性能评价等方法研究了硫酸根对Ni/γ-Al2O3催化剂的物性和催化噻吩加氢脱硫选择性的影响。结果表明:含硫酸根前躯体制备的Ni/γ-Al2O3催化剂的加氢脱硫活性和选择性高于Ni(NO3)2前躯体制备的催化剂;NiSO4前躯体制备催化剂的加氢脱硫活性和选择性最高,较Ni(NO3)2制备的催化剂分别提高了19百分点和78%。催化活性的差异与催化剂中Ni的形态相关,硫酸根的存在一方面减弱了Ni与载体间的相互作用,另一方面提供了镍原位自硫化的硫化剂,形成的硫化镍物种与NiSO4是催化剂的活性中心,其脱硫活性和选择性明显高于引入硫化剂硫化的催化剂。  相似文献   

6.
以过渡金属盐-四硫代钼含硫酸铵为钼源,采用等体积浸渍法制备了以Mo-Ni为主要活性组分的硫化型加氢精制催化剂NMS/γ-Al2O3。以高氮催化柴油为原料,在实验室100 m L高压加氢装置上考察了该催化剂的加氢反应性能,并与传统氧化型催化剂NMO/γ-Al2O3进行了对比。结果表明,在反应温度350℃、氢分压6.5 MPa、氢油体积比500、体积空速1.0 h-1的工艺条件下,NMS/γ-Al2O3对催化柴油的脱硫率为99.7%,脱氮率为96.3%,脱硫活性略高于NMO/γ-Al2O3,脱氮活性优势明显。NMS/γ-Al2O3表面Mo S2平均堆积层数和平均晶片长度分别为4.0层和3.6 nm,Ni-Mo-S相主要以Ⅱ型活性相存在,活性位密度较高,这可能是该催化剂加氢性能优异的主要原因。  相似文献   

7.
以硫化态CoMo/γ-Al2O3,NiW/γ-Al2O3,NiMo/γ-Al2O3,NiMoW/γ-Al2O3为催化剂,1-甲基萘为加氢反应的模型化合物,利用高压加氢微型反应器考察在不同类型催化剂体系上1-甲基萘的加氢饱和反应规律。结果表明:对1-甲基萘的芳烃饱和性能,Ni-Mo-W型最优,Ni-Mo型、Ni-W型次之,Co-Mo型最低;催化剂的活性越高则1-甲基萘的芳烃饱和越容易达到热力学平衡,对压力的变化越不敏感;1-甲基萘的加氢饱和优先发生在不带甲基的芳环上,产物中5-甲基四氢萘的质量分数约为1-甲基四氢萘的2倍。  相似文献   

8.
含氮化合物对NiW体系催化剂芳烃加氢性能的影响   总被引:2,自引:0,他引:2  
以γ-Al2O3、B改性的γ-Al2O3、F改性的γ-Al2O3、SiO2-Al2O3为载体制备Ni、W含量相同的四种催化剂,通过程序升温还原表征考察活性金属与不同载体的相互作用。利用氮含量不同、四氢萘含量相同的四种原料考察含氮化合物对同种NiW体系催化剂四氢萘加氢的影响以及对活性金属与载体相互作用不同的催化剂四氢萘加氢的影响。结果表明,以γ-Al2O3或SiO2-Al2O3载体制备的催化剂的金属组分与载体相互作用较强,B或F改性的γ-Al2O3能显著削弱活性金属与载体的相互作用;含氮化合物对四氢萘加氢具有强烈的抑制作用,使四氢萘加氢反应的表观活化能增加;在实验研究的四种催化剂中,金属组分与载体相互作用较弱的催化剂受含氮化合物的抑制较强。  相似文献   

9.
分别采用超声波辐照浸渍法和普通浸渍法制备了MnO2/γ-Al2 O3催化剂,运用电感耦合等离子体原子发射光谱(ICP-AES)和X射线衍射(XRD)对催化剂进行表征,在空气-异丁醛-MnO2/γ-Al2 O3体系中评价其对加氢柴油的氧化脱硫催化性能,并考察了反应温度、异丁醛用量、空气流量、溶剂类型和剂/油体积比对柴油氧化脱硫反应的影响.结果表明,超声波辐照浸渍法制备的MnO2/γ-Al2 O3催化剂对柴油氧化脱硫的催化性能明显优于普通浸渍法制备的催化剂.最适宜的催化柴油氧化脱硫反应的条件为:乙腈为溶剂、加氢柴油30 mL、温度35℃、异丁醛20 mmol、空气流量0.06 L/min、超声波辐照浸渍法制备的MnO2/γ-Al2 O3催化剂0.08 g、剂/油体积比1/6和催化氧化时间10 min.在此条件下可将柴油硫质量分数从542 μg/g降至31 μg/g,柴油脱硫率和回收率分别为94.3%和93.3%.  相似文献   

10.
以Ni、W为活性组分,Al2O3为载体,制备催化剂Ni-W/Al2O3,并采用乙二醇后处理未焙烧的催化剂Ni-W/Al2O3,得到催化剂Ni-W/Al2O3-AT。通过X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、紫外拉曼光谱(LRS)、透射扫描电子显微镜(TEM)、XPS等表征方法研究催化剂的物化性质。结果表明:催化剂Ni-W/Al2O3经乙二醇后处理后,改善了载体氧化铝表面的羟基基团的分布,促使W物种以八面体配位多核聚钨酸的形态存在;并有效削弱了载体与活性金属之间的强相互作用,提高了W物种的分散度与硫化度,最终使得催化剂形成更多“Ni-W-S”加氢活性相,提高了催化剂Ni-W/Al2O3-AT的加氢活性。与催化剂Ni-W/Al2O3相比,催化剂Ni-W/Al2O3-AT对舟山石化焦化轻蜡油具有更高的加氢脱硫、脱氮与芳烃饱和性能,硫质量分数可从6 850 μg/g降至10 μg/g,氮质量分数由3 720 μg/g降至12 μg/g,双环以上芳烃质量分数可从25.8%降至3.2%。  相似文献   

11.
以Fe元素作为主要金属组分,γ-Al2O3为载体,制备负载不同第二金属组分的XO-Fe2O3/γ-Al2O3双金属催化剂(X为La,Ce,Co,Cu),采用XRD、SEM、氮气吸附-脱附等手段对催化剂进行表征;以H2O2为氧化剂,噻吩为模型硫化物,将含噻吩的正辛烷作为模拟汽油,研究非均相类Fenton试剂催化氧化脱硫过程,考察催化剂中金属元素种类、n(H2O2)/n(S)、催化剂用量等对氧化脱除噻吩效果的影响。结果表明:Fe2O3/γ-Al2O3具有一定的催化H2O2氧化脱硫活性,非均相类Fenton试剂可以催化H2O2产生·OH;在Fe2O3/γ-Al2O3中掺杂少量其它金属可以改变其催化活性,其中以加入Cu后的催化剂活性最高,Cu起到了催化剂助剂的作用,催化剂呈现明显的介孔性质;对于30mL噻吩质量分数为526μg/g的模拟汽油,以CuO-Fe2O3/γ-Al2O3为催化剂,在反应温度333K、催化剂加入量0.2g、n(H2O2)/n(S)=7.40、反应时间120min的条件下,噻吩脱除率达到95.3%以上,有效硫质量分数降至9.4μg/g,达到超深度脱硫效果。  相似文献   

12.
以γ-Al2O3粉末及碳酸氢铵为原料,采用水热处理技术,成功制备了柱状碳酸铝铵团簇,并以此柱状碳酸铝铵团簇为前躯体制备氧化铝。采用XRD、SEM、N2吸附-脱附、TEM等技术分析了反应温度、反应时间、物料配比等因素对柱状碳酸铝铵形貌的影响,并研究其高温相变过程及相应γ-Al2O3的结构特性。研究发现,合成柱状碳酸铝铵团簇的最佳反应条件:γ-Al2O3粉末与碳酸氢铵质量比为1:1.75,反应温度为140 ℃,反应时间为6 h。合成的柱状碳酸铝铵团簇直径为5~15 μm,该碳酸铝铵团簇由直径为50~100 nm、长为0.5~3 μm的柱状碳酸铝铵交叉堆积而成。焙烧温度为600,800,1 000,1 300 ℃时,碳酸铝铵团簇依次转变为γ,η,α相氧化铝。以柱状碳酸铝铵团簇为前躯体制备的γ-Al2O3的比表面积为300 m2/g、孔体积为0.67 mL/g,直径15 nm以上孔的体积占总孔体积的50%以上。  相似文献   

13.
以γ-Al2O3粉末及碳酸氢铵为原料,采用水热处理技术,成功制备了柱状碳酸铝铵团簇,并以此柱状碳酸铝铵团簇为前躯体制备氧化铝。采用XRD、SEM、N2吸附-脱附、TEM等技术分析了反应温度、反应时间、物料配比等因素对柱状碳酸铝铵形貌的影响,并研究其高温相变过程及相应γ-Al2O3的结构特性。研究发现,合成柱状碳酸铝铵团簇的最佳反应条件:γ-Al2O3粉末与碳酸氢铵质量比为1:1.75,反应温度为140 ℃,反应时间为6 h。合成的柱状碳酸铝铵团簇直径为5~15 μm,该碳酸铝铵团簇由直径为50~100 nm、长为0.5~3 μm的柱状碳酸铝铵交叉堆积而成。焙烧温度为600,800,1 000,1 300 ℃时,碳酸铝铵团簇依次转变为γ,η,α相氧化铝。以柱状碳酸铝铵团簇为前躯体制备的γ-Al2O3的比表面积为300 m2/g、孔体积为0.67 mL/g,直径15 nm以上孔的体积占总孔体积的50%以上。  相似文献   

14.
以磷酸二氢铵为磷源对γ-Al2O3进行磷预处理,得到了不同磷质量分数(0~7.2%)的改性γ-Al2O3,以其为载体采用等体积浸渍法和H2原位还原法制备了负载型Ni2P催化剂。以噻吩为模型化合物在固定床反应器上对催化剂的加氢脱硫(HDS)性能进行评价,并运用X射线衍射(XRD)、N2吸附/脱附、氨程序升温脱附(NH3-TPD)等技术对改性载体及催化剂进行表征。结果表明:对γ-Al2O3进行磷预处理可以提高其比表面积,并可以对其孔径分布进行一定的调节;同时,磷的加入可以调变γ-Al2O3的酸强度分布及总酸量。采用适量磷改性的γ-Al2O3为载体制备催化剂有利于生成纯相的Ni2P。当载体中的磷质量分数达到3.6%时,γ-Al2O3的总酸量及中强酸量较高,比表面积较大,以其为载体制备的负载型Ni2P催化剂具有更高的加氢脱硫性能。  相似文献   

15.
采用活性恢复处理技术对工业Mo-Ni/γ-Al_2O_3再生催化剂进行活化处理,对活化处理前后的催化剂进行XRD,BET,SEM,TPR,TG表征,并在固定床恒温中型加氢装置上评价催化剂的柴油加氢性能。结果表明:与活化处理前相比,经过活化处理后的Mo-Ni/γ-Al_2O_3再生催化剂的比表面积及孔结构得到改善,还原温度降低100℃左右,活性金属组分与载体间的相互作用力减弱,Mo-Ni活性组分在催化剂表面的分散更好;在反应温度低10℃的工艺条件下,经过活化处理后的Mo-Ni/γ-Al_2O_3再生催化剂的加氢性能优于未活化处理的再生催化剂。  相似文献   

16.
以AlCl3?6H2O为铝源、NaOH为沉淀剂,采用水热合成法制得AlOOH和AlOOH纳米片,焙烧后得到相同形貌的Al2O3。通过X射线衍射、透射电子显微镜、傅里叶变换红外光谱对样品进行表征。结果表明:所制样品为γ-AlOOH,焙烧后转变为γ-Al2O3,结晶度高,每个纳米棒及纳米片均为单晶;n(OH-)/n(Al3+)对AlOOH和Al2O3的形貌有较大影响,随着n(OH-)/n(Al3+)的增大,AlOOH的长径比逐渐减小,最终成为纳米片;Al2O3纳米棒表面有2种类型的羟基,分别归属于(110)晶面HO-μ2-AlⅥ和(100)晶面HO-μ3-AlⅥ,Al2O3纳米片表面有4种类型的羟基,分别归属于(111)晶面HO-μ3-AlⅥ、HO-μ2-AlⅥ和(110)晶面HO-μ2-AlⅥ和HO-μ3-AlⅥ。  相似文献   

17.
利用分子模拟和实验探究结合,考察了H2O影响γ-Al2O3吸附SO2、NO的机理。在构造γ-Al2O3(110C)面基础模型和建立H2O,SO2,NO等吸附质分子在(110C)面的吸附模型后,确定了优化的吸附构象。通过电荷密度和分波态密度分析发现,吸附质与(110C)面Al位点存在明显的电子转移,进而形成稳定的吸附结构。H2O通过分子吸附和解离吸附,占据Al3c和O3c位点;SO2主要吸附在Al3c、Al4c位点;NO与Al4c位点相互作用,需要在O3c位点氧化。因此,H2O与SO2和NO在γ-Al2O3(110C)面的Al3c和O3c位点存在竞争吸附。试验结果与分子模拟理论分析结果基本一致,H2O不利于SO2和NO在γ-Al2O3上的吸附。  相似文献   

18.
γ-Al2O3是应用极为广泛的非均相催化剂载体之一,近年来,研究者发现其晶粒微观形貌对表面性质、活性金属Pt等的稳定性具有较大影响。综述了γ-Al2O3前体薄水铝石晶粒形貌的调控、表征技术,及γ-Al2O3晶粒暴露晶面对其表面性质、Pt原子稳定性的影响,对现有研究结果存在的问题进行了探讨,并展望了未来的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号