首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isothermal section of the Co-Mo-Zr ternary system at 1000 °C was investigated by using 29 alloys. The annealed alloys were examined by means of x-ray diffraction, optical microscopy, and electron probe microanalysis. It was confirmed that three ternary phases, λ1 (Co0.5-1.5Mo1.5-0.5Zr, hP12-MgZn2), ω (CoMoZr4) and κ (CoMo4Zr9, hP28-Hf9Mo4B), exist in the Co-Mo-Zr ternary system at 1000 °C. And the experimental results also indicated that there are sixteen three-phase regions at 1000 °C. Thirteen of them were well determined in the present work: (1) (γCo)?+?Co11Zr2?+?Co23Zr6, (2) (γCo)?+?Co23Zr6?+?ε-Co3Mo, (3) Co23Zr6?+?ε-Co3Mo?+?μ-Co7Mo6, (4) (Mo)?+?μ-Co7Mo6?+?Co2Zr, (5) (Mo)?+?Co2Zr?+?λ1, (6) (Mo)?+?Mo2Zr?+?λ1, (7) λ1?+?Mo2Zr?+?CoZr, (8) Co2Zr?+?CoZr?+?λ1, (9) Mo2Zr?+?CoZr2?+?ω, (10) κ?+?Mo2Zr?+?ω, (11) CoZr2?+?liquid?+?ω, (12) (βZr)?+?liquid?+?ω and (13) (βZr)?+?κ?+?ω. The homogeneity of λ1 spans in the range of 28.66-50.77 at.% Co and 15.71-37.03 at.% Mo, and that for ω is within the range of 18.66-23.64 at.% Co and 8.53-14.68 at.% Mo. The homogeneity range for κ is from 8.09 at.% to 9.94 at.% Co and 23.13 at.% to 25.58 at.% Mo. The maximum solubility of Zr in μ-Co7Mo6 phase, Mo in Co2Zr phase and Co in Mo2Zr phase were determined to be 6.17, 11.27 and 9.14 at.%, respectively. While the solubility of Zr in ε-Co3Mo and (γCo) phases, Mo in Co11Zr2 and CoZr phases were detected to be extremely small. According to this work, the Co23Zr6 phase contained 15.61 at.% Mo and 12.7 at.% Zr. In addition, the maximum solubility of Co and Zr in (Mo) phase and Mo in (γCo) phase were measured to be 3.50, 5.44 and 7.40 at.%, respectively.  相似文献   

2.
The addition of nitrogen (0.10 to 0.20 pct) to Fe-Cr-Ni alloys of simulated commercial purity results in a real displacement of the σ phase boundaries to higher chromium contents. The effect is small for the (γ + σ)/γ boundary, but is pronounced for the (γ + α + σ)/(γ + α) boundary. Although there is an indication of an exceptionally large shift of the σ boundaries to higher chromium contents, especially in steels with nitrogen over 0.2 pct, the major portion of this apparent shift results from the fact that carbide and nitride precipitation cause “chromium impoverishment” of the matrices. The effect of combined additions of nitrogen and silicon to the Fe-Cr-Ni phase diagram is demonstrated also. Nitrogen can nullify the effect of about 1 pct Si in shifting the (γ + σ)/γ phase boundary to lower values of chromium at all nickel levels from 8 to 20 pct. Nitrogen can nullify this σ-forming effect of about 2 pct Si at the 8 pct Ni level, but not at the 20 pct Ni level. The alloys studied were in both the cast and the wrought conditions. There are indications that the σ phase forms more slowly in the cast alloys than in the wrought alloys if both are in the completely austenitic state. The presence of δ ferrite in the cast alloys accelerates the formation of σ. Cold working increases the rate of σ formation in both cast and wrought alloys.  相似文献   

3.
The β-ω phase transformation, important in many titanium alloys, has been revealed in zirconium alloys. Hitherto unattainable tensile strength with adequate ductility is now feasible for certain zirconium alloys. It is expected that many new applications will result from this discovery.  相似文献   

4.
Ti-Cr alloys age harden after β-quenching by formation of an ω-phase. The structure and orientation of this transition phase have been determined. The hardness appears to be caused by strain in the β-matrix produced by concurrent enrichment of alloy content in the ω-phase.  相似文献   

5.
Iodide zirconium was combined with calculated amounts of nitrided zirconium sponge and arc melted to prepare alloys in the 0 to 6 wt pet N region. Annealing treatments were carried out at 21 temperature levels. Metallographic examination of the heat-treated specimens permitted construction of the binary phase diagram from 0 to 6 pet N. Features of the diagram include the peritectic formation of both a and β solid solutions. The maximum solubility of nitrogen is 0.8 pet in β zirconium and 4.8 pet in a zirconium. An X-ray study of nitrided materials was made in the range 6 to 13 wt pet N region because serious nitrogen losses were experienced when attempts were made to arc melt these high nitrogen alloys.  相似文献   

6.
A generalized theory of the normal properties of metals in the case of electron–phonon (EP) systems with a nonconstant density of electron states has been used to study the normal state of the SH3 and SH2 phases of hydrogen sulfide at different pressures. The frequency dependence of the real Re Σ (ω) and imaginary ImΣ (ω) parts of the self-energy Σ (ω) part (SEP) of the Green’s function of the electron Σ (ω), real part Re Z (ω), and imaginary part Im Z (ω) of the complex renormalization of the mass of the electron; the real part Re χ (ω) and the imaginary part Imχ (ω) of the complex renormalization of the chemical potential; and the density of electron states N (ε) renormalized by strong electron–phonon interaction have been calculated. Calculations have been carried out for the stable orthorhombic structure (space group Im3?m) of the hydrogen sulfide SH3 for three values of the pressure P = 170, 180, and 225 GPa; and for an SH2 structure with a symmetry of I4/mmm (D4h1?7) for three values of pressure P = 150, 180, and 225 GP at temperature T = 200 K.  相似文献   

7.
In this paper, the isothermal section at 1273 K and liquidus projection of ternary Ni-Al-Os system in Ni-rich region were firstly measured by using 6 annealed and 6 as-cast Ni-Al-Os alloys with 65 at.% Ni in combination with x-ray diffraction, optical microscopy and electron probe microanalysis techniques. For the determined partial isothermal section at 1273 K, 2 single-phase, 4 two-phase and 2 three-phase regions were observed. The solubilities of Os in both γ and γ′ phases were also determined. For the proposed liquidus projection, four primary surfaces of γ′, γ, β and δ, and two invariant reactions were identified. Secondly, the microhardness of both as-cast and annealed alloys were measured. The evolution trend of microhardness in both as-cast and annealed alloys with Os addition generally increases first, and then decreases. Thirdly, the further comprehensive discussion on possible substitution of Re by Os in new-generation nickel-based single-crystal superalloys were performed in terms of strengthening degree, high-temperature creep resistance, and possibility for formation of harmful topologically close-packed phases. It was finally concluded that Os may be used as a new additional element to replace or partly replace Re in Ni-based single crystal superalloys.  相似文献   

8.
X-ray diffraction analysis and transmission electron and scanning electron microscopies were used to study the effect of alloying with zirconium (0–20 at %) on the phase composition and structural and morphological features of thermoelastic martensitic transformations in ternary Ni–Ti–Zr alloys. The electrical resistivity of alloys has been measured in a wide range of temperatures, the critical temperatures have been determined, and a complete diagram of the high-temperature thermoelastic forward and reverse martensitic transformations B2 ? B19' occurring with a hysteresis in the range of 32–50 K has been constructed based on XRD data. The intercritical range of the temperatures of transformations increases as the zirconium content increases within the indicated limits. The lattice parameters of the monoclinic crystal lattice of the B19' martensite have been measured at room temperature. The twinning types most frequently observed in B19' martensite have been found as follows: I-(011), \(\left( {11\;\bar 1} \right)\) and (001), II-(011).  相似文献   

9.
Oxygen is always a constituent in “real” titanium alloys including titanium alloy powders used for powder-based additive manufacturing (AM). In addition, oxygen uptake during powder handling and printing is hard to control and, hence, it is important to understand and predict how oxygen is affecting the microstructure. Therefore, oxygen is included in the evaluation of the thermodynamic properties of the titanium-vanadium system employing the CALculation of PHAse Diagrams method and a complete model of the O-Ti-V system is presented. The β-transus temperature is calculated to increase with increasing oxygen content whereas the extension of the α-Ti phase field into the binary is calculated to decrease, which explains the low vanadium solubilities measured in some experimental works. In addition, the critical temperature of the metastable miscibility gap of the β-phase is calculated to increase to above room temperature when oxygen is added. The effects of oxygen additions on phase fractions, martensite and ω formation temperatures are discussed, along with the impacts these changes may have on AM of titanium alloys.  相似文献   

10.
Phase equilibria of the Al-Cu-Zn system on Al-Zn rich side was experimentally determined with 16 alloys annealed at 360 °C. The annealed alloys were examined by means of x-ray diffraction, electron probe microanalysis and differential scanning calorimetry. Five single-phase regions and seven two-phase regions as well as three three-phase regions, i.e. α-(Al)?+?θ-Al2Cu?+?τ′-Al4Cu3Zn, α-(Al)?+?τ′-Al4Cu3Zn?+?ε-CuZn4 and α-(Al)?+?ε-CuZn4?+?(Zn), were determined. The partial isothermal section of the Al-Cu-Zn system on Al-Zn rich side at 360 °C was constructed based on the obtained experimental data in this work. It was observed that the solid solution phase α-(Al) would easily decompose into ε-CuZn4, (Zn) and α′-(Al) at the ambient temperature in the early stages. The ternary phase τ′-Al4Cu3Zn would form and ε-CuZn4 would disappear gradually along with the extension of aging time.  相似文献   

11.
The structure and magnetic and magnetocaloric properties of new nonstoichiometric TbCo2Ni x compounds (0 ≤ x ≤ 0.4) have been studied. The alloys with х ≤ 0.1 have been shown to be single-phase with the MgCu2-type structure; in alloys with х > 0.1, an additional phase with a PuNi3-type structure has been formed. It has been found that the concentration dependences of the Curie temperature and magnetic moment of the 3d-metal sublattice have a maximum at x = 0.025. The magnetocaloric effect magnitude for the TbCo2Nix compounds has been estimated using the results of magnetic and heat-capacity measurements.  相似文献   

12.
Fe80Zr10B10, Fe80Zr10B9Cu1, and Fe80Zr8Mo2B10 amorphous alloys were prepared by melt-spinning and annealed at various temperatures. The effect of Cu and Mo additions on the thermal property, microstructure and magnetic properties of Fe80Zr10B10 alloy is studied. Both Cu and Mo additions decrease the crystallization activation energy. The crystallization process of Fe80Zr10B10 alloy is very complex. Both Cu and Mo additions simplify the crystallization process. But a few α-Mn-type phase is still observed in the initial crystallization stage of Mo-containing alloy. Both Cu and Mo additions increase saturation magnetization (M s) and decrease coercivity (H c) of alloys. The addition of Cu is beneficial to decrease H c in the initial crystallization stage, and the addition of Mo is beneficial to decrease H c at high temperatures.  相似文献   

13.
The effects of increasing hydrogen content, introducing a notch, and changing the strain rate on properties of titanium and one of its alloys were investigated over a range of testing temperatures from —196° to 200°C. Both high purity and commercial purity A-55 titanium were used as representative a materials, while a commercial Ti-8 pct Mn alloy was used for an α-β alloy. It was found possible to analyze the data, using the ductile-to-brittle transition temperature concept. Increasing hydrogen, the presence of a notch, and increasing the testing speed raised the transition temperature for the a materials. The presence of hydrogen and notches raised the transition temperature of the α-β alloy also. However, increasing the testing speed generally decreased the transition temperature of the α-β alloy.  相似文献   

14.
A tailor-made thermodynamic database of the Fe-Mn-Al-C system was developed using the CALPHAD approach. The database enables predicting phase equilibria and thereby assessing the resulting microstructures of Fe-Mn-Al-C alloys. Available information on the martensite start (Ms) temperature was reviewed. By employing the Ms property model in the Thermo-Calc software together with the new thermodynamic database and experimental Ms temperatures, a set of model parameters for the Fe-Mn-Al-C system in the Ms model was optimised. Employing the newly evaluated parameters, the calculated Ms temperatures of the alloys in the Fe-Mn-Al-C system were compared with the available measured Ms temperatures. Predictions of Ms temperatures were performed for the alloys, Fe-10, 15 and 20 wt.% Mn-xAl-yC. The predictability of the Ms model can be further validated when new experimental Ms temperatures of the Fe-Mn-Al-C system are available.  相似文献   

15.
Structural features of the NANOPERM-type alloys Fe91 ? x Mo8Cu1B x with x = 12, 15, and 17 have been investigated by Mössbauer spectroscopy. The room-temperature Mössbauer spectra of the as-quenched alloys are characteristic of disordered structural arrangement, but traces of bcc-Fe(Mo) as well as a FeMo2B2 phase have been revealed by X-ray diffraction in all the samples. These results have been confirmed by conversion-electron Mössbauer spectroscopy. The differences between the opposite sides of the ribbon-shaped samples have been shown to stem from structural distinctions. From the point of view of hyperfine interactions, the x = 12 sample exhibits paramagnetic behavior. With increasing x, a contribution from ferromagnetic regions appears gradually, thus leading to an increase in the magnetic ordering temperature in the as-quenched state. Partially crystallized samples have been prepared by controlled annealing of the original precursors for one hour at temperatures ranging from 330 to 650°C in a vacuum. The temperature of the onset of crystallization has been determined to be of 430, 450, and 470°C for x = 12, 15, and 17, respectively. During the first step of crystallization, bcc-Fe(Mo) nanosized grains are formed. Surface features of the samples investigated have also been characterized by using atomic force microscopy.  相似文献   

16.
The influence of Ta and Ti additions on microstructural stability and creep behavior in novel Co-Al-W base single-crystal alloys has been investigated. Compared to the ternary alloy, the γ′ solvus temperature and γ′ volume fraction were raised by individual additions of Ta and Ti, and increased further in the quinary alloy containing both alloying additions. In contrast to ternary and quaternary alloys, an improved microstructural stability with the stable γγ′ two-phase microstructure and more than 60% γ′ volume fraction existed in the quinary alloy after prolonged aging treatment at 1050°C for 1000 h. The creep behavior at 900°C revealed lower creep rates and longer rupture lives in the quaternary alloys compared to the ternary alloy, whereas the quinary alloy exhibited even better creep resistance. When the creep temperature was elevated to about 1000°C, the creep resistance of the quinary alloy exceeded the previously reported Co-Al-W-base alloys and first-generation Ni-base single-crystal superalloys. The improved creep resistance at approximately 1000°C was considered to be associated with high γ′ volume fraction, γ′ directional coarsening, and dislocation substructure, which included γγ′ interfacial dislocation networks and the sheared γ′ precipitates containing stacking faults and anti-phase boundaries.  相似文献   

17.
Compositions of Fe(100 ? x)Mn x (x = 10 and 12 at. %) and Fe(100 ? y)Ni y (y = 18 and 20 at. %) were produced by combined mechanical alloying of pure-metal powders and annealed in the austenitic field. After annealing and cooling to room temperature, the alloys had a single-phase austenitic structure. During deformation, the γ phase partially transforms into the α 2 phase (and/or ? phase in Fe-Mn alloys). The phase composition of the alloys after deformation depends on the amount of alloying elements and the predeformation annealing regime. The amount of martensite in the structure of a bulk alloy obtained by powder compacting grows proportionally to the degree of deformation of the sample.  相似文献   

18.
TbCo2Mnx (x ≤ 1) alloys were synthesized and their crystal structure, heat capacity, magnetic and magnetocaloric properties were studied. Single-phase compounds with the MgCu2-type structure were formed at х < 0.4. In alloys with х > 0.4, additional phases with the PuNi3- and Th6Mn23-type structures form. It was shown that there is a substantial increase in the Curie temperature and magnetic moment of 3d?metal sublattice of the nonstoichiometric compounds when compared to those of the TbCo2 binary compound. The magnetocaloric effect of single- and multiphase alloys were estimated based on magnetic and heat capacity measurements.  相似文献   

19.
Self-diffusion coefficients of iron in molten Fe-C alloys have been measured by using the capillary method. In addition, the samples have been autoradiographed and sectioned to insure that no significant convection has occurred during the diffusion. The results can be represented by the equation D = 4.3×10?3 exp (—12.200/RT) for carbon = 4.6 pct and T = 1513° to 1633°K; and D = 1.0×10?2 exp (—15,700/RT) for carbon = 2.5 pct and T = 1613° to 1673°K. The D values are higher and the heat of activation for diffusion lower in alloys containing more carbon. Calculation based on the Einstein-Stokes equation indicates that the diffusing species is iron ion.  相似文献   

20.
The results of investigation of the influence of additions of 2 and 3 at.% of Sn and simultaneously of Sn and 3 at.% Nb on microstructure and properties of the bulk metallic glasses of composition (Ti40Cu36?x Zr10Pd14Sn x )100?y Nb y are reported. It was found that the additions of Sn increased the temperatures of glass transition (T g), primary crystallization (T x ), melting, and liquidus as well as supercooled liquid range (ΔT) and glass forming ability (GFA). The nanohardness and elastic modulus decreased in alloys with 2 and 3 at.% Sn additions, revealing similar values. The 3 at.% Nb addition to the Sn-containing amorphous phase decreased as well all the T g, T x , T L, and T m temperatures as ΔT and GFA; however, relatively larger values of this parameters in alloys containing larger Sn content were preserved. In difference to the previously published results, in the case of the amorphous alloys containing small Nb and Sn additions, a noticeable amount of the quenched-in crystalline phases was not confirmed, at least of the micrometric sizes. In the case of the alloys containing Sn or both Sn and Nb, two slightly different amorphous phase compositions were detected, suggesting separation in the liquid phase. Phase composition of the alloys determined after amorphous phase crystallization was similar for all compositions. The phases Cu8Zr3, CuTiZr, and Pd3Zr were mainly identified in the proportions dependent on the alloy compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号