首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研制了用于直播卫星接收机的12GHz波段GaAs双栅MESFET单片混频器。为了缩小芯片面积,把一个缓冲放大器直接与混频器的中频端口连接,而不采用中频匹配电路。混频器和缓冲放大器分开制造在两个芯片上,以便单独测量。混频器芯片尺寸为0.96×1.26mm~2,缓冲放大器芯片尺寸为0.96×0.60mm~2。混频器的双栅FET,以及缓冲放大器的单栅FET的电极间距很小。栅长和栅宽各1μm和320μm。在11.7~12.2GHz,带有缓冲放大器的混频器提供转换增益为2.9±0.4dB,单边带噪声系数12.3±0.3dB。本振(LO)频率为10.8GHz。低噪声变频器由单片前置放大器、镜象抑制滤波器,以及单片中频放大器与混频器连接构成。在同一频段,变频器提供转换增益为46.8±1.5dB,单边带噪声系数为2.8±0.2dB。  相似文献   

2.
用于直播卫星接收机中的12GHz频段GaAs双栅MESFET单片混频器已经研制成功。为了减小芯片尺寸,缓冲放大器直接连在混频器的中频输出端后面,而不采用中频匹配电路。混频器和缓冲器制作在各自的芯片上,以便能分别测量。混频器芯片尺寸是0.96×12.6mm,缓冲器芯片尺寸是0.96×0.60mm。用于混频器的双栅FET和用于缓冲器的单栅FET都具有间隔紧密的电极结构。栅长和栅宽分别是1μm和320μm。带有缓冲放大器的混频器在11.7~12.2GHz射频频段提供2.9±0.4dB变频增益和12.3±0.3dB单边带(SSB)噪声系数。本振频率是10.8GHz。将一个单片前置放大器、一个镜象抑制滤波器和一个单片中频放大器与混频器连接起来构成低噪声变频器。变频器在上述频段内提供46.8±1.5dB的变频增益和2.8±0.2dB单边带噪声系数。  相似文献   

3.
<正> 美国麻省理工学院林肯实验室在半绝缘 GaAs 衬底上成功地制造了结合平衡混频器和MESFET 放大器的单片31GHz 接收机前端。在同一片子上制造了两种不同类型的器件:肖特基二极管和 MESFET。初步结果是:在2.0GHz 中频下单边带噪声系数 NF 为11.5dB,在中频增加到2.6GHz 时,NF 增到13.3dB。在2.0~2.25GHz 内,增益约4dB,在2.3~2.6GHz  相似文献   

4.
本文介绍了一种微带巴伦多倍频程微波集成双平衡混频器。它是由宽带微带巴伦和二极管电桥组成。这种微带巴伦双平衡混频器显示了良好的噪声特性和隔离特性。在1-18GHz工作频率范围内,最大双边带噪声系数为8.7dB,平均双边带噪声系数约6dB;本振端一信号端、本振端一中频端隔离度均大于15dB。  相似文献   

5.
本文介绍了增益响应平坦、工作在2-20GHz的单级和两级砷化镓行波放大器。该放大器单片集成在0.1毫米厚的砷化镓衬底上,输入输出线的阻抗均为50欧姆。衬底上还包括完整的栅极和漏极的偏置电路。将这种放大器级联后,在2—20GHz范围内,增益为30dB,噪声系数为9±1dB。  相似文献   

6.
基于70 nm InP高电子迁移率晶体管(HEMT)工艺,研制了一款175~205 GHz分谐波混频器太赫兹单片集成电路(TMIC)。使用三线耦合Marchand巴伦实现本振信号的平衡-不平衡转换。在射频端口设计了紧凑型耦合线结构的带通滤波器,实现对射频信号低损耗带通传输的同时缩小了芯片尺寸。测试结果表明混频器在175~205 GHz频率范围内,单边带(SSB)变频损耗小于15 dB,典型值14 dB。混频器中频频带为DC~25 GHz,射频端口对本振二次谐波信号的隔离度大于20 dB。芯片尺寸为1.40 mm×0.97 mm,能够与相同工艺的功率放大器、低噪声放大器实现片上集成,从而满足太赫兹通信等不同领域的应用需求。  相似文献   

7.
已经研制成功30GHz接收机用的几种单片集成电路.低噪声放大器芯片在14dB增益时噪声系数为7.dB,中频放大器在30dB控制范围内,增益为13dB.混频器和移相器变频损耗和插入损耗分别为10.5dB和1.6dB.  相似文献   

8.
研制出一种20GHz频段单片砷化镓场效应低噪声放大器。通过得到在半绝缘砷化镓衬底上的微带线传输特性来完成设计和制造。研制的羊片放大器由亚微米栅GaAsMESFET和在半绝缘砷化镓衬底上制作输入和输出分布参数匹配电路所构成,尺寸为2.75×1.45mm~2。在21GHz没有任何附加调节情况下得到了6.2dB噪声系数和7.5dB的相应增益。  相似文献   

9.
提出了采用0.18μm CMOS工艺,应用于802.11a协议的无线局域网接受机的低噪声放大器和改进的有源双平衡混频器的一些简单设计概念。通过在5.8 GHz上采用1.8 V供电所得到的仿真结果,低噪声放大器转换电压增益,输入反射系数,输出反射系数以及噪声系数分别为14.8 dB,-20.8 dB,-23.1 dB和1.38 dB。其功率损耗为26.3 mW。设计版图面积为0.9 mm&#215;0.67 mm。混频器的射频频率,本振频率和中频频率分别为5.8 GHz,4.6 GHz和1.2 GHz。在5.8 GHz上,混频器的传输增益,单边带噪声系数(SSB NF),1 dB压缩点,输入3阶截点(IIP3)以及功率损耗分别为-2.4 dB,12.1 dB,3.68 dBm,12.78 dBm和22.3 mW。设计版图面积为1.4 mm&#215;1.1 mm。  相似文献   

10.
给出了一种应用在毫米波前端的单平衡环形混频器。该混频器采用高介电常数的复合材料(R ogersDuro id3010,rε=10.2),以获得较小的芯片面积;电路设计中重点考虑了在较低的本振功率的情况下获得较小的变频损耗,并给出了一种新的混合环的分析方法。当本振在36.5 GH z有9 dBm的功率输入时,混频器有7 dB的变频损耗,双边带噪声系数11.5 dB,本振到中频和射频到中频分别有40.5 dB和31 dB的隔离度。  相似文献   

11.
王巍  王颖  彭能  王晓磊 《电子质量》2010,(12):36-38
该文介绍了一种UWB下变频混频器的设计思路和技术。在TSMC0.18μmCMOS工艺下,使用Agilent公司的ADS软件设计出一种3~5GHz的CMOS混频器电路。仿真结果表明,工作电压3V时,RF频率为3.169GHz,本振频率为3.434GHz,中频频率为265MHz,转换增益为15.4dB,双边带噪声系数低于13.3dB,P1dB压缩点为-13dBm,工作电流为4.6mA。  相似文献   

12.
<正>南京电子器件研究所在研制成功MMIC的基础上,用多芯片微波组装技术,研制成功了四种接收机前端。 (1)C波段前端 由单片低噪声放大器、单片混频器及单片前置中频放大器组成。整个前端封装于20mm×25mm×5mm的管壳中构成小型模块。信号频率为C波段,中频为40~1000MHz,本振功率5mW,总增益大于30dB,噪声系数典型值3dB,最优值2.5dB。 (2)脉冲接收机前端 包括单片开关、单片低噪声放大器、单片混频器三部分,组装于20mm×25mm×5mm管壳中,重量为6克。工作频率为C波段,开关隔离度大于40dB,噪声系数小于8dB。 (3)前置放大器模块 该模块组装于9mm×l8mm×4mm微带管壳内,也工作于C波段,含有AGC功放,AGC范围0~18dB,输出功率P_(-1dB)分别为35,150,580mW三种,用户可根据需要组合成功率放大链。 (4)脉冲前置放大器模块 模块尺寸与(3)同,C波段性能为P_(-1dB)150,580mW。  相似文献   

13.
介绍一种采用8个砷化镓FET和7个二极管的单片集成跨阻放大器,其结果良好,频率为DC-1.5GHz,增益Ga≥18dB,噪声系数Fn≤4.3dB(f=400MHz,Rs=RL=50Ω)。  相似文献   

14.
采用GaAs单片微波集成电路(MMIC)技术,研制出用于直播卫星(DBS)家庭接收机的12GHz低噪声放大器(LNA)、1GHz中频放大器(JFA)以及11GHz介质谐振振荡器(DRO)。每一个单片集成电路芯片都包含有源元件FET,以及单电源工作所需的自偏置源电阻和旁路电容。它还包含隔直电容和射频旁路电容。三级LNA在11.7~12.2GHz范围内具有3.4dB噪声系数和19.5dB增益。三级负反馈型的IFA在0.5~1.5GHz范围内,其噪声系数和增益分别为3.9dB和23dB。介质谐振振荡器(DRO)在10.67GHz频率上给出10mW的输出功率,在-40~+80℃的温度范围内频率稳定度为1.5MHz。由这些单片微波集成电路(MMIC)构成的直播卫星接收机,在11.7~12.2GHz内总噪声系数≤4dB。  相似文献   

15.
结合混合微波集成电路(HMIC)工艺和砷化镓单片微波集成电路(MMIC)工艺各自优势,设计制作了一款小型化大功率S波段平衡式限幅MMIC低噪声放大器.采用平衡式结构,提高了限幅功率容量和可靠性.由于金丝键合线的等效电感具有更高Q值,低噪声放大器单片的输入匹配采用外部金丝键合线匹配,有效降低了低噪声放大器单片的噪声系数.限幅器采用混合集成工艺制成,能够耐受较大功率.利用微波仿真软件,设计制作了兰格(Lange)电桥、限幅电路和低噪声放大器输入匹配等电路.最终产品尺寸仅为22 mm×16 mm×6 mm,在2.7~3.5 GHz内增益27 ~ 28 dB,噪声系数小于1.3 dB,驻波比小于1.3,该平衡限幅MMIC低噪声放大器可承受功率超过200 W、占空比为15%的脉冲功率冲击.  相似文献   

16.
张浩  李智群  王志功 《半导体学报》2010,31(11):115008-8
本文给出了一个应用于GPS、北斗、伽利略和Glonass四种卫星导航接收机的高性能双频多模射频前端。该射频前端主要包括有可配置的低噪声放大器、宽带有源单转双电路、高线性度的混频器和带隙基准电路。详细分析了寄生电容对源极电感负反馈低噪声放大器输入匹配的影响,通过在输入端使用两个不同的LC匹配网络和输出端使用开关电容的方法使低噪声放大器可以工作在1.2GHz和1.5GHz频带。同时使用混联的有源单转双电路在较大的带宽下仍能获得较好的平衡度。另外,混频器采用MGTR技术在低功耗的条件下来获得较高的线性度,并不恶化电路的其他性能。测试结果表明:在1227.6MHz和1557.42MHz频率下,噪声系数分别为2.1dB和2.0dB,增益分别为33.9dB和33.8dB,输入1dB压缩点分别0dBm和1dBm,在1.8V电源电压下功耗为16mW。  相似文献   

17.
设计了一款用于76~81 GHz汽车雷达的CMOS毫米波正交下混频器,该混频器由前置放大、有源正交混频两部分构成。在前置放大器中,采用基于变压器的跨导增强技术改善了增益。在有源正交下混频器中,使用并联电感谐振结合交叉耦合管动态电流注入技术,消除跨导管与开关管之间的寄生电容,降低混频器噪声、提高转换增益。芯片采用55-nm CMOS工艺制造,测试结果表明,该下混频器3dB带宽为5.5 GHz,峰值转换增益4.1 dB,I/Q两路增益失配小于0.16 dB(50Ω负载条件),最小噪声系数19 dB,输入1dB压缩点-6 dBm,直流功耗40 mW,实现了优异的FOM值。  相似文献   

18.
利用微波Office软件仿真设计了一种C波段低成本带阻型低噪声放大器,为了实现低噪声系数和小的电压驻波比,文中采用平衡式两级场效应管放大.通过采用一个带阻滤波器滤波,使得电路在通带低端附近有20 dB以上的增益抑制,加上一级单片放大,总增益大于30 dB.实验结果为:在4.8 GHz~5.25 GHz频率范围内,增益为34.9 dB,噪声系数<1.03 dB,带内增益平坦度<0.38 dB,输入驻波比<1.20,输出驻波比<1.15.在4.4 GHz~4.65 GHz频率范围内,增益抑制>21 dB.  相似文献   

19.
报道了工作频率分别为10.7-11.6GHz和11.7-12.2GHzGaAs单片接收机的研制结果。接收机并包括四种电路,即低噪声效大器、介质稳频振荡器、混频器和中频放大器。电路均采用GaAs全离子注入平面工艺创作,并封装在金属管壳内测试.10.7-11.6GHz接收机的噪声系数达到3.5dB,增益大于35dB;11.7-12.2GHz接收机的噪声系数可达到4dB,增益大于31dB。  相似文献   

20.
本文给出了一个采用TSMC 0.18 m CMOS工艺应用于X波段SAR(合成孔径雷达)的单片接收机射频前端的设计。接收机前端由低噪声放大器和混频器组成,低噪声放大器工作在9 GHz~11GHz,混频器将10GHz的射频信号转换到2GHz中频,本振信号由片外提供。在X波段频率下,尽管CMOS 0.18μm工艺特征频率比较低,工作仍然实现了低噪声系数,提高了集成度。测试结果表明,本设计在300MHz的带宽上实现了20dB的转换增益,噪声系数达到2.7Db,输入1dB压缩点达到-19.2dBm,在1.8V的电源电压下前端消耗26.6mA电流,芯片面积为1.3×0.97mm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号