共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
针对雷达多目标跟踪提出一种基于mean-shift[算法的目标跟踪方法.首次将mean-shift的方法应用于目标的数据关联,找出源于目标的观测值后对其进行Kalman滤波,从而估计出目标运动的轨迹,实现目标跟踪.MST跳出传统思维框架,首次利用概率密度分布的不同来区分服从不同参数分布的数据,从整体上对观测数据进行整合再结合最邻近法完成数据关联,该方法具有计算速度快,跟踪效果好的特点. 相似文献
3.
一种快速多人脸跟踪算法 总被引:1,自引:0,他引:1
提出一个基于Mean Shift的实时多人脸跟踪算法。通过引入自适应目标跟踪窗口,改进了Mean Shift算法的目标连续跟踪性能;提出序贯跟踪法解决多人脸跟踪过程中目标发生粘连重叠的问题;引入多辅助信息解决了相邻两帧中人脸的对应问题。为进一步提高整个算法的跟踪速度和鲁棒性,引入卡尔曼滤波器对目标进行预测。实验结果表明该算法具有很好的实时性和跟踪效果。 相似文献
4.
基于Camshift的人脸跟踪算法 总被引:1,自引:1,他引:1
Camshift跟踪算法具有很好的实时性,但是也存在不能实现自动跟踪,跟踪过程中鲁棒性不强,遇到遮挡问题跟踪失效,只能进行单人脸跟踪等问题.针对这些问题,提出了基于改进Camshift的人脸跟踪算法,该算法结合了Adaboost人脸检测算法并改进了原算法中的颜色直方图模型.以实际人脸检测与跟踪实验为例,证明了该算法在人脸自动检测跟踪过程中具有速度快、准确度高,同时可以跟踪多个人脸,能有效克服跟踪过程中遮挡问题等. 相似文献
5.
6.
Camshift跟踪算法具有很好的实时性,但是也存在不能实现自动跟踪,跟踪过程中鲁棒性不强,遇到遮挡问题跟踪失效,只能进行单人脸跟踪等问题。针对这些问题,提出了基于改进Camshift的人脸跟踪算法,该算法结合了Adaboost人脸检测算法并改进了原算法中的颜色直方图模型。以实际人脸检测与跟踪实验为例,证明了该算法在人脸自动检测跟踪过程中具有速度快、准确度高,同时可以跟踪多个人脸,能有效克服跟踪过程中遮挡问题等。 相似文献
7.
提出一种基于人脸检测与肤色信息相结合的人脸实时跟踪方法。该方法先用Adaboost算法进行人脸检测,在此基础上,CAMSHIFT算法跟据人脸肤色信息实现对人脸的自动跟踪。实验表明,该算法具有快速、鲁棒的特点,能够满足实时系统的需要。 相似文献
8.
9.
跟踪遮挡目标的一种鲁棒算法 总被引:2,自引:0,他引:2
为了解决在跟踪目标过程中的遮挡问题,引入Kalman滤波器为Mean Shift跟踪算法选择初始点,在跟踪稳定的情况下进行模型更新以消除由于目标缓慢变化而产生的累积误差对跟踪结果的影响。根据Kalman滤波器残差的大小判定是否发生遮挡,遮拦检测算法对目标进行分块检测从而把遮挡分为部分遮挡和完全遮挡两种情况,并对两种情况进行区别讨论:对部分遮挡情况不做特殊处理;对完全遮挡情况,结合目标的运动方向提出6点搜索策略来找回目标。实验表明,该算法能很好地解决跟踪运动目标过程中目标的遮挡问题。 相似文献
10.
一种基于直方图模式的运动目标实时跟踪算法 总被引:11,自引:0,他引:11
动态图像的分析和理解是当前研究的热点之一,基于视觉的目标跟踪技术有着广泛的实用价值。目标跟踪的难点在于完成帧与帧之间的快速且稳定的目标匹配。该文给出了一种运动目标的跟踪算法,它与云台设备控制相结合,可使被跟踪目标始终位于图像的中心区域。直方图具有较好稳定性,可以不受目标的外形和比例变化的影响;而均值平移(MeanShift)算法可以得到局部最优解,并具有快速和有效的特点。因此,该文以直方图为模式特征,以均值平移算法为跟踪核心算法。对候选目标进行运动检验,过滤了伪目标,保证了跟踪的可靠性。在搜索过程中,通过Kalman滤波器的运动预测,减少模式匹配的搜索范围,提高了处理速度。最后,该文给出了实地测试结果,验证了跟踪算法的实用性和有效性。 相似文献
11.
基于粒子滤波和均值漂移的目标跟踪 总被引:1,自引:0,他引:1
将均值漂移算法嵌入到粒子滤波的跟踪框架中,将颜色分布作为观测模型,将HSV颜色空间根据人类的颜色感知差异,对各个分量进行非等间隔量化,然后利用基于核函数的直方图进行建模。该算法克服了粒子滤波计算量较大的缺点,同时也克服了均值漂移算法容易陷入局部最大且无法恢复的缺点。实验结果表明,该方法具有较强的实时性和鲁棒性。 相似文献
12.
基于均值漂移与卡尔曼滤波的目标跟踪算法 总被引:8,自引:1,他引:8
均值漂移算法在目标跟踪过程中没有利用目标的运动方向和速度信息,在目标受到干扰时容易跟踪失败,而Kalman滤波能够较为准确地预测目标的速度和位置。因此,提出了一种结合均值漂移与Kalman滤波的跟踪算法,使用Kalman滤波对目标运动速度和空间位置进行预测。根据干扰的不同情况,使用不同的比例因子将两算法的跟踪结果线性加权得到目标的最终位置。实验结果表明该算法是可行有效的。 相似文献
13.
人物跟踪技术是目前智能监控系统的核心方法之一,针对人脸运动的非线性非高斯的特点,引入粒子滤波算法来进行运动预测估计,抵抗遮挡干扰。同时,根据人脸结构特点,提出了一种分块颜色直方图,用以描述人脸的特征。并且根据预测精度对预测过程中目标运动速度和过程噪声方差进行自适应更新。实验结果表明,在人脸的旋转,肤色和部分遮挡影响下跟踪精度较高,抵抗光照环境变化,以及人脸大小变化等的鲁棒性较强。 相似文献
14.
15.
16.
在视频目标跟踪过程中,Mean-Shift算法存在着核函数带宽固定不变的缺陷,对尺度大小发生变化的目标无法进行有效跟踪。提出一种多尺度理论与粒子滤波器(PF)相结合的改进算法。通过粒子滤波器对多尺度理论统计得到的跟踪窗信息量进行预测修正,据此计算核窗宽大小变化的比例系数,实现跟踪算法的窗口自适应能力。实验结果表明,改进的跟踪算法对尺寸逐渐减小和逐渐增大的目标均能自动选择合适的跟踪窗口大小。 相似文献
17.
目的 在实时人脸跟踪过程中,因光照变化、目标被遮挡以及跟踪时间长等因素,导致的误差累积都会影响系统的整体性能。针对这些问题,提出一种融合检测和跟踪技术的方法,其中包含了检测、控制和跟踪3个模块(简称DCT)。方法 在检测模块中,利用AdaBoost算法提取人脸的相关信息,并将信息传递给跟踪模块进行跟踪处理;在跟踪模块中,采用在线随机蕨和SURF(speeded up robust features)算法对目标进行跟踪。同时,在每次检测到目标之后,会通过控制模块对当前跟踪目标准确性进行判断。结果 选取国际标准数据组并与LBP+Camshift+Kalman滤波算法、SEMI算法、TLD(tracking-learning-detection)算法比较,实验结果表明,DCT方法在目标发生尺度较大变化、目标遮挡、旋转、形变以及光照发生变化时都具有良好的跟踪识别效果,DCT方法识别准确率在95%以上,平均误识别率和漏识别率分别为0.86%和0.78%。结论 DCT方法具有消除误差累积,跟踪失败后自动恢复等特点,同时可以消除环境中光照、遮挡和仿射变换的影响并满足系统跟踪的实时性要求,运用于视频人脸跟踪系统中能够提高系统的实时性及鲁棒性。 相似文献
18.
基于改进Mean-Shift与自适应Kalman滤波的视频目标跟踪 总被引:4,自引:0,他引:4
提出一种改进的Mean-Shift和自适应Kalman滤波器相结合的视频运动目标跟踪算法。对选定的跟踪目标,采用三帧差和区域增长法分割目标并得到主颜色信息。在跟踪过程中,利用自适应的Kalman滤波器估计每一帧的起始迭代位置,再利用改进的Mean-Shift算法得到跟踪位置并作为测量值反馈给自适应Kalman滤波器,并引入遮挡率因子以自适应地调节Kalman估计参数。实验结果表明,该算法能对视频中的运动目标实现检测和连续跟踪,对遮挡也有较好的鲁棒性。 相似文献
19.
针对现有跟踪主流算法对目标机动性、目标遮挡和目标背景干扰综合性能不强的现状,改进算法利用组合分片模型和粒子滤波算法的结合来提升综合性能,提高跟踪算法准确性。改进算法采用粒子滤波算法,同时通过优化组合重采样算法提高算法的跟踪性能。组合分片模型结合水平竖直分片模型和环形分片模型的优点,通过Bhattacharyya系数进行模型相似性度量,高效克服人脸跟踪中遮挡问题和背景干扰问题。实验通过改进算法和对比算法在多变化人脸视频集进行跟踪,证明改进算法提高了对人脸目标的跟踪成功率。针对人脸跟踪中目标机动性、目标遮挡和目标背景干扰问题,通过算法的改进,跟踪效果明显改善、提升了跟踪的成功率,实现了算法对以上三种因素综合性能的提升。 相似文献