首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
异步轧制AZ31镁合金板材的超塑性工艺及变形机制   总被引:1,自引:0,他引:1  
经过异步轧制工艺获得AZ31镁合金薄板。在300~450℃范围内,分别通过5×10-3,1×10-3s-1和5×10-4s-1不同应变速率进行高温拉伸实验研究其超塑性变形行为,计算应变速率敏感指数m值、超塑性变形激活能Q及门槛应力σ0值。通过EBSD分析和扫描电镜观察拉伸断裂后的断口形貌,分析AZ31镁合金的超塑性变形机制。结果表明:AZ31镁合金的塑性变形能力随着变形温度的升高及应变速率的降低而增强。当拉伸温度为400℃、m=0.72、应变速率为5×10-4s-1时,AZ31具有良好的超塑性,伸长率最大为206%。温度为400℃时,异步轧制AZ31镁合金的超塑性变形是以晶格扩散控制的晶界滑移和基面滑移共同完成的。  相似文献   

2.
在700℃-850℃的温度范围内对Ti-6%Al-4%V(质量分数)合金板材进行超塑性拉伸试验,研究了应变速率为3×10-4-5×10-38-1条件下的拉伸变形行为.结果表明:Ti6A14V合金在空气中表现出良好的低温超塑性变形能力.在800℃初始应变速率ε=5×10-4s-1条件下,延伸率达到536%.在较低的700℃下变形(ε=5×10-4s-1),延伸率仍然超过了300%.在整个变形温度区间内,应变速率敏感性指数m均为0.3左右,最大值为0.63.在850℃变形激活能与晶界自扩散激活能十分相近,表明晶界扩散控制的晶界滑动是超塑性变形的主要机制.在700-750℃,变形激活能远大于晶界自扩散激活能,位错运动是激活能升高的原因.在800℃变形的激活能介于两者之间,表明随着温度的降低变形机制逐渐发生改变.  相似文献   

3.
研究了用电沉积方法制备的纳米Ni和Ni/SiCp纳米复合材料的超塑特性,在试验温度410℃和450℃,应变速率为8.3×10-4s-1~5×10-2s-1的条件下,纳米Ni和Ni/SiCp纳米复合材料均表现出超塑性.当温度为450℃、应变速率为1.67×10-2s-1时,在Ni/SiCp中获得最大延伸率为836%;在同样的温度下应变速率为1.67×10-3s-1时纳米Ni获得最大延伸率为550%.对超塑性变形后组织的分析表明,晶界滑移是主要变形机制,晶粒长大至亚微米/微米量级后,变形机制是位错协调晶界滑移和位错滑移塑性.  相似文献   

4.
Ti-15-3钛合金超塑行为研究   总被引:2,自引:0,他引:2  
为系统了解Ti-15-3合金的超塑性,研究了固溶态和两种不同变形量冷轧态的Ti-15-3合金板材在700~800 ℃和1×10-4 ~3×10-3s-1应变速率范围内的超塑性行为.结果表明:Ti-15-3合金具有较好的超塑性能,冷轧态合金的延伸率均优于固溶态,且随着板材冷轧变形量的增大而增大;各应变速率下,该合金都在780 ℃时获得最大延伸率和应变速率敏感性指数.在780 ℃和1×10-4s-1条件下拉伸时,冷轧变形量为52%的Ti-15-3合金板材获得了370%的延伸率,m值为O.56;变形温度和速率对合金的超塑性能影响很大,合金的延伸率在730~780 ℃范围内随温度的升高和应变速率的降低而升高,合金的流变应力则随之下降.  相似文献   

5.
通过高温拉伸实验研究TC18钛合金在温度为720~950℃,初始应变速率为6.7×10~(-5)~3.3×10~(-1)s~(-1)时的超塑性拉伸行为和变形机制。结果表明:TC18钛合金在最佳超塑性变形条件下(890℃,3.3×10~(-4)s~(-1)),最大伸长率为470%,峰值应力为17.93MPa,晶粒大小均匀。在相变点Tβ(872℃)以下拉伸,伸长率先升高后下降,在温度为830℃,初始应变速率为3.3×10~(-4)s~(-1)时取得极大值373%,峰值应力为31.45MPa。TC18钛合金在两相区的超塑性变形机制为晶粒转动与晶界滑移,变形协调机制为晶内位错滑移与攀移;在单相区的超塑性变形机制为晶内位错运动,变形协调机制为动态回复和动态再结晶。  相似文献   

6.
采用CMT4104电子万能拉伸试验机分别进行温度为870℃,应变速率为3.3×10-4s-1的恒应变速率和温度为850~890℃,应变速率为3.3×10-5~3.3×10-3s-1的应变速率循环法超塑性拉伸实验。结果表明:在变形过程中存在动态回复与动态再结晶现象,并采用Avrami方程描述了动态再结晶动力学行为;基于应变速率循环法获得了TC4-DT合金的本构模型,再通过1stopt软件加以回归拟合,得到较为精确的TC4-DT合金超塑性变形本构方程。  相似文献   

7.
分别采用最大m值法和恒应变速率法对Ti-24Al-15Nb-1.5Mo合金板材进行超塑拉伸,研究了940~1000℃、5.5×10-5~1.7×10-3s-1和不同拉伸轴方向的超塑性变形行为。结果表明:采用最大m值法获得的伸长率均高于恒应变速率法的,分别在980℃、垂直轧制方向获得了1596%的最大伸长率和960℃、3.3×10-4s-1、与轧制方向成45°获得了932%的伸长率。原始纤维组织经过超塑变形后发生等轴化,并且等轴晶粒随着应变速率的减小和温度的升高,长大程度逐渐增大。最大m值法超塑拉伸可以明显减少孔洞的产生。  相似文献   

8.
针对7B04铝合金开展了变形温度为470~530℃,应变速率为0.0003~0.01s~(-1)的高温超塑性拉伸实验,研究了材料的超塑性变形行为和变形机制。结果表明,7B04铝合金的流动应力随着变形温度的升高和应变速率的降低而逐渐减小,伸长率随之增加;在变形温度为530℃,应变速率为0.0003s~(-1)时,7B04铝合金的伸长率达到最大1105%,超塑性能最佳;应变速率敏感性指数m值均大于0.3,且随变形温度的升高而增加;在500~530℃的变形温度范围内,m值大于0.5,表明7B04铝合金超塑性变形以晶界滑动为主要变形机制;变形激活能Q为190kJ/mol,表明7B04铝合金的超塑性变形主要受晶内扩散控制;7B04铝合金超塑性变形中在晶界附近有液相产生,且适量的液相有利于提高材料的超塑性能。  相似文献   

9.
SiCw/MB15镁基复合材料超塑性   总被引:1,自引:0,他引:1  
严峰  吴昆  赵敏 《材料工程》2000,(3):32-35
对SiCw/MB15镁基复合材料的超塑性变形行为进行了研究.结果表明:SiCw/MB15镁基复合材料在340℃,应变速率为1.66×10-2s-1变形条件下,断裂延伸率达到200%,应变速率敏感性指数m为0.35;超塑性变形后基体中出现了许多空洞和近似平行于断口的细小裂纹;晶须在基体中随机排布,失去了变形前轴向平行于挤压方向的特点,说明基体晶粒在变形中发生了滑动.  相似文献   

10.
曾泽瑶  杨银辉  曹建春  倪珂  潘晓宇 《材料导报》2021,35(18):18163-18169,18189
采用物理模拟方法研究了18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢在1123~1423 K/0.01~10 s-1、变形量为70%条件下的热压缩变形行为.不锈钢的流变曲线在1223~1423 K/0.01~1 s-1条件下发生了流变软化和二次硬化现象,且二次硬化随应变速率增至10 s-1而减缓.动态再结晶组织演变主要受温度和变形量的影响,在1123 K/0.01~10 s-1变形时主要发生在铁素体相,而在1323 K/0.01~10 s-1变形时主要发生在奥氏体相.不同应变速率条件下,1123 K变形时不锈钢发生动态软化的程度最大,并随温度升至1223 K时应力降幅较快.不同温度下1 s-1变形时不锈钢的软化程度最差,0.1 s-1且高于1223 K变形时不锈钢的软化程度最好.当应变速率一定时,再结晶临界应变随温度升高呈先增加后下降趋势.建立了0.2~1.2真应变条件下功率耗散系数η与失稳因子ξ的3D热加工图.随应变的增大,η>0.3的区域逐渐从1300~1400 K/0.01 s-1向1300~1400 K/10 s-1扩大,ξ>0的安全区域集中在高温区.预测热加工的最佳参数范围为T=1280~1423 K,ε·=0.033~0.326 s-1,功率耗散系数η=0.39~0.44.  相似文献   

11.
The superplasticity of Ti-43Al-9V-0.2Y alloy sheet hot-rolled at 1100 ℃ was systematically investigated in the temperature range of 750-900 ℃ under an initial strain rate of 10-4 s-1.A bimodal γ grain-distribution microstructure of TiA1 alloy sheet,with abundant nano-scale or sub-micron γ laths embed-ded inside β matrix,exhibits an impressive superplastic behaviour.This inhomogeneous microstructure shows low-temperature superplasticity with a strain-rate sensitivity exponent of m =0.27 at 800 ℃,which is the lowest temperature of superplastic deformation for TiAl alloys attained so far.The maximum elongation reaches ~360% at 900 ℃ with an initial strain rate of 2.0 × 10-4 s-1.To elucidate the softening mechanism of the disordered β phase during superplastic deformation,the changes of phase composi-tion were investigated up to 1000 ℃ using in situ high-temperature X-ray diffraction (XRD) in this study.The results indicate that β phase does not undergo the transformation from an ordered L20 structure to a disordered A2 structure and cannot coordinate superplastic deformation as a lubricant.Based on the microstructural evolution and occurrence of both y and β dynamic recrystallization (DR) after tensile tests as characterized with electron backscatter diffraction (EBSD),the superplastic deformation mecha-nism can be explained by the combination of DR and grain boundary slipping (GBS).In the early stage of superplastic deformation,DR is an important coordination mechanism as associated with the reduced cavitation and dislocation density with increasing tensile temperature.Sufficient DR can relieve stress concentration arising from dislocation piling-up at grain boundaries through the fragmentation from the original coarse structures into the fine equiaxed ones due to recrystallization,which further effectively suppresses apparent grain growth during superplastic deformation.At the late stage of superplastic de-formation,these equiaxed grains make GBS prevalent,which can effectively avoid intergranular cracking and is conducive to the further improvement in elongation.This study advances the understanding of the superplastic deformation mechanism of intermetallic TiAl alloy.  相似文献   

12.
High strain rate superplastic deformation behavior of powder metallurgy (PM) processed 17 vol. pct SiCp/2024 Al composite sheet after heat treatment was investigated over a range of temperature from 753 to 833 K. At 813 K,a maximum elongation of 259% was discovered at a strain rate of 10^-1 s^-1. The activation energy was closed to that for lattice diffusion of Al and increased at temperature upon incipient melting temperature. The mechanism of superplastic deformation for present composites was attributed to lattice diffusion controlled grain boundary sliding.  相似文献   

13.
《Materials Letters》2001,47(1-2):30-34
In this paper, we aim to examine the superplastic behavior of an extruded Ni–28.5Al–20.4Fe (at.%) alloy, which consists of β+γ phases with an average linear intercept grain size of 30–50 μm. Its tensile properties were determined at temperatures from 1123 to 1323 K and initial strain rates from 1.04×10−2 to 1.04×10−4 s−1. A maximum elongation of 233% was obtained at 1123 K and a strain rate of 5.2×10−4 s−1. Transmission electron microscope (TEM) observation found many dislocation-free grains adjacent to grains with a high-dislocation density and subgrains and subgrain boundaries, which indicate that dynamic recrystallization has occurred as an efficient accommodation mechanism. Scanning electron microscope (SEM) examination of the fracture sample after superplastic deformation reveals many voids on the fracture surface. By correlating with the results of TEM observation, it is suggested that the superplastic deformation in this alloy should be controlled by a grain boundary sliding-based mechanism accommodated by the movement of dislocation and dynamic recrystallization.  相似文献   

14.
Controlling mechanism during superplastic deformation of ZK40 alloy processed by ECAP was identified. Effects of twinning and dynamic strain ageing (DSA) on superplasticity were analyzed. Amplitude in stress oscillation was correlated with solute atom concentration theoretically. Twinning can be an enhancing factor in grain boundary sliding and DSA had apparent influence on stress fluctuation; they were accommodation mechanisms for superplastic deformation through grain reorientation and interaction between solute atoms and dislocations, respectively. The interaction between mobile and forest dislocations played a dominant role for the occurrence of DSA, when dislocation density was relatively low in large grains. The effect of DSA became more active with increasing temperature, although grain boundary sliding (GBS) was the controlling mechanism throughout the whole process of superplastic deformation under elevated temperatures.  相似文献   

15.
The superplastic deformation characteristics and microstructure evolution of the rolled AZ91 magnesium alloys at temperatures ranging from 623 to 698 K (0.67–0.76 Tm) and at the high strain rates ranging from 10−3 to 1 s−1 were investigated with the methods of OM, SEM and TEM. An excellent superplasticity with the maximum elongation to failure of 455% was obtained at 623 K and the strain rate of 10−3 s−1 in the rolled AZ91 magnesium alloys and its strain rate sensitivity m is high, up to 0.64. The dominant deformation mechanism in high strain rate superplasticity is still grain boundary sliding (GBS), which was studied systematically in this study. The dislocation creep controlled by grain boundary diffusion was considered the main accommodation mechanism, which was observed in this study.  相似文献   

16.
发现微量Mg,Cr和Co元素对Monel K-500型的高温塑性具有明显的改善作用,实验合金在高温下表现出一定的超塑性。测定了超塑性的应变速率敏感指数m值和形变激活能,发现合金在超塑性变形时激活艰较低,超塑性变形可能是一个扩散所控制的过程。  相似文献   

17.
SiC晶须增强铝基复合材料超塑性   总被引:7,自引:2,他引:5       下载免费PDF全文
采用高温拉伸、透射电镜、X射线衍射仪、差示扫描量热计和超塑性经典理论,对低压浸渗、小挤压和热轧制备的SiC晶须增强2024Al基复合材料超塑性的力学行为和变形机制进行了研究。研究表明:复合材料的晶粒细小,尺寸约为1 μm;在温度为788 K、初始应变速率为3.3×10-3s-1的拉伸条件下,超塑伸长率为370%;DSC曲线上有一小的初期熔化吸热峰,其温度相应于偏晶反应:Al+Al2Cu+Cu4Mg5Si4Al<em>x→液相+Mg2Si,785 K;超塑性变形的主导机制为传统的晶界扩散机制和适量液相共同控制的晶界(界面)滑动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号