首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
豆渣的综合开发利用   总被引:7,自引:0,他引:7  
豆渣营养价值很高,在豆渣的干物质中蛋白质含量为19%~23%,脂肪含量为16~21%。膳食纤维为50%~57%,是一种理想的膳食保健纤维源。被称为“第七营养素”,美国医学家,丹尼斯、伯基特在研究发现,心脏病、糖尿病、便秘、大肠癌、肥胖症及胆结石等文明疾病发生的主要原因是人类膳食中食  相似文献   

2.
将豆渣膳食纤维添加到面条中,研究豆渣膳食纤维颗粒度、豆渣膳食纤维添加量、海藻酸钠添加量、食盐添加量对豆渣膳食纤维保健面条烹煮品质特性的影响。结果表明,豆渣膳食纤维颗粒度为100目、用量g%,海藻酸钠添加量为0.25%,食盐添加量为4.0%时,豆渣膳食纤维保健面条具有良好的烹煮品质。  相似文献   

3.
大豆是我国的传统食品,其蛋白质含量约占38%、脂肪20%、碳水化合物20%、粗纤维5%、矿物质5%,其中蛋白质中氨基酸比例接近动物蛋白质的氨基酸模式,是一种安全蛋白质;大豆中不含胆固醇,故有降血脂的作用;而含有的维生素、无机盐等营养物质又使大豆具有治疗糖尿病、缺铁性贫血、防止动脉硬化和防治肿瘤等医疗功能,因此大豆制品越来越受到人们的重视。1大豆渣生产的膳食纤维挂面大豆渣是大豆食品加工厂的副产品,富含膳食纤维和其他营养成分,且价格低廉。据测定每1009湿大豆渣含水85~899、膳食纤维1.8一26g、蛋白质26~3·Zg、…  相似文献   

4.
豆渣中含50%以上膳食纤维及19%左右蛋白质。用豆渣作为膳食纤维——蛋白添加剂按比例与小麦粉配合,可提高其膳食纤维及蛋白质含量。同时具有营养互补作用。  相似文献   

5.
新兴膳食纤维源-豆渣的利用   总被引:3,自引:0,他引:3  
本文介绍豆渣作为新兴膳食纤维源的营养价值和作用。同时叙述以豆渣作为原料制作各种食品的方法,为豆渣的综合利用提供新的途径。  相似文献   

6.
改性豆渣膳食纤维的理化性质、结构及其益生活性研究   总被引:1,自引:0,他引:1  
以豆渣膳食纤维为对象,分别采用高速剪切、复合酶解、高速剪切协同酶解改性豆渣膳食纤维,分析其理化性质、结构以及益生活性的变化。结果表明,3种改性方法均能显著改善豆渣膳食纤维的持水性、膨胀力和持油力(P<0.05)。改性后的豆渣膳食纤维可溶性组分增多,粒径减小,微观结构变得疏松多孔;傅里叶变换红外光谱分析结果表明,改性后的豆渣膳食纤维特征吸收峰的分布未发生明显变化,部分峰强度减弱;X射线衍射结果表明,改性处理并未改变豆渣膳食纤维晶体构型。体外发酵实验表明,改性豆渣膳食纤维对嗜酸乳杆菌和乳双歧杆菌均有一定的促进增殖作用,其中对嗜酸乳杆菌的增殖作用更显著;3种改性方式中,高速剪切协同酶解改性制备的豆渣膳食纤维的益生活性最高,主要体现在提高益生菌活菌数和降低培养基pH。因此,高速剪切协同酶解可作为一种改性豆渣膳食纤维的优良方法,提升膳食纤维的理化性质和益生活性,为其在功能食品中应用提供参考。  相似文献   

7.
发酵型豆渣纤维饮料的研制   总被引:1,自引:0,他引:1  
豆渣是大豆制品生产中的副产品,长期以来利用率不高,但却是很好的膳食纤维源和蛋白源。利用黑曲霉发酵豆渣,优化豆渣发酵方法,以感官、膳食纤维含量及微生物为评价产品标准,得到营养丰富的发酵型豆渣纤维饮料产品及其生产工艺参数。结果表明,豆渣加入量为0.2g/mL、接种量1%(V/V)条件下,发酵后所得滤液添加0.002g/mL复合稳定剂,经过调配、过滤、灭菌所得饮料颜色、气味和膳食纤维量达到预期目标,具有较好的稳定性。  相似文献   

8.
膳食纤维具有调节胃肠道和预防慢性疾病等重要的生理功能,被誉为第七大营养素,但不同膳食纤维功能特性不同,因此,高活性膳食纤维的研发以及应用于食品加工和作为保健(功能)食品成为目前食品行业关注的热点。豆渣是大豆加工副产品,富含膳食纤维,但主要是不溶性膳食纤维(IDF),可溶性膳食纤维(SDF)含量极低,导致豆渣口感较差,在食品加工中的应用受限。本文综述了不同膳食纤维功能特性及比较了不同改性方法的工作原理和对豆渣膳食纤维中SDF的影响,为不同来源IDF的改性及豆渣膳食纤维的加工利用提供支持。  相似文献   

9.
豆渣膳食纤维制备及其在食品中的应用   总被引:13,自引:0,他引:13  
本项目以新鲜豆渣为原料,通过L9(3^4)正交实验设计方法,就影响膳食纤维含量的碱浓度、温度、时间和酶用量4项因素进行了实验。研究确立了制备豆渣纤维的最佳工艺条件。利用本工艺,湿豆渣经浸泡、碱处理、酶解、干燥和超微粉碎等程度,即得膳食纤维,工艺产率为85%,产品纤维素含量是80%,本文还以豆渣膳食纤维为原料研制出大豆纤维系列食品。  相似文献   

10.
以豆渣为原料,分别采用化学法和湿热法对豆渣膳食纤维的脱脂工艺和脱腥工艺进行优化,分析豆渣膳食纤维的理化性质,并将豆渣膳食纤维应用于香肠中。结果表明,豆渣膳食纤维的脱脂工艺为:料液比1∶15(g/mL),NaOH浓度5%,温度80℃,时间60min,该条件下豆渣膳食纤维的脱脂率为92.91%;豆渣膳食纤维的脱腥工艺为:料液比1∶5(g/mL),时间4h,温度50℃,pH 4.0,该条件下豆渣膳食纤维的脱腥率为69.66%。豆渣膳食纤维的膨胀力、持水力、结合水力和持油力分别为3.49mL/g、1.14g/g、3.90g/g和0.91g/g,将豆渣膳食纤维添加到香肠中能够改善香肠的弹性和硬度。  相似文献   

11.
豆渣膳食纤维保健面条烹煮品质特性研究   总被引:1,自引:0,他引:1  
将豆渣膳食纤维添加到面条中,研究豆渣膳食纤维颗粒度、豆渣膳食纤维添加量、海藻酸钠添加量、食盐添加量对豆渣膳食纤维保健面条烹煮品质特性的影响。结果表明,豆渣膳食纤维颗粒度为100目、豆渣膳食纤维用量9%、海藻酸钠添加量为0.25%、食盐添加量为4.0%时,豆渣膳食纤维保健面条具有良好的烹煮品质。  相似文献   

12.
高压蒸煮对豆渣膳食纤维理化特性及发酵性能影响   总被引:1,自引:0,他引:1  
以豆渣为原料提取膳食纤维,采用高压蒸煮方法处理,观察豆渣膳食纤维组成及理化性质(持水力、结合水力和膨胀性)变化情况.同时以高压蒸煮处理前后的豆渣膳食纤维为灌胃材料和发酵底物,做体内、体外发酵试验,测定粪便和发酵液中短链脂肪酸(SCFA)的含量,研究高压蒸煮处理对豆渣膳食纤维发酵特性的影响.结果发现:高压蒸煮处理30 min可显著提高豆渣纤维中水溶性膳食纤维含量,提高幅度达69.4%;高压蒸煮使豆渣膳食纤维的持水力和结合水力降低,但对膨胀性影响不大;体内发酵试验表明,与原豆渣膳食纤维相比,高压蒸煮豆渣膳食纤维可以显著提高小鼠粪便中的丙酸和丁酸含量;体外发酵试验表明,高压蒸煮处理有利于豆渣膳食纤维发酵产生乙酸和丙酸,但不利于丁酸的形成.体内体外发酵所产生短链脂肪酸的差异反映了体内体外发酵过程中微生物菌群的差异.  相似文献   

13.
为促进芸豆渣的综合利用,对豆渣进行发酵改性,以改善其基本结构并提高其物化特性。利用复合菌系进行发酵,响应面优化制备工艺,分离可溶性膳食纤维和不溶性膳食纤维,对发酵前后的膳食纤维进行表观结构及物化特性的分析。发酵可溶性膳食纤维含量为17.47%,提高了11.84%,发酵后膳食纤维含量提高了2.81%。发酵后不溶性膳食纤维的持水力、持油力及膨胀力分别提高了2倍、6倍、1.9倍,吸附性及离子交换能力皆显著优于未处理的不溶性膳食纤维,发酵后可溶性膳食纤维的抗氧化能力也显著提高。发酵后的不溶性膳食纤维的微观结构褶皱更明显,发酵后的可溶性膳食纤维的颗粒明显增多变小且结构呈紧簇蜂窝状,红外光谱图也表明豆渣膳食纤维具有膳食纤维特有组分。发酵后的豆渣膳食纤维微观结构及物化特性皆有较明显地改善,其具备作为优质膳食纤维地潜能。  相似文献   

14.
豆渣是豆类在制作产品过程中的副产物,膳食纤维含量超过60%。虽然豆渣产量极其丰富,但目前主要作为一种劣质低廉的纤维资源用于饲喂动物,甚至作为废物被丢弃。其中所含的膳食纤维没有得到充分的利用。因此,对豆渣进行综合开发利用,既可以减少资源浪费,又可以创造价值,将会为农业经济的发展带来新的增长点。以豆渣为原料,提取其中的膳食纤维,并介绍其功能特性和目前的利用现状。  相似文献   

15.
研究真菌以及真菌结合乳酸菌发酵对豆渣膳食纤维组成、理化特性及总还原力的影响。结果显示:发酵可显著降低蛋白质及脂肪含量(p 0. 05),使碳水化合物相对含量增加;膳食纤维组成分析显示发酵可显著降低不溶性膳食纤维(insoluble dietary fiber,IDF)含量,增加可溶性膳食纤维(soluble dietary fiber,SDF)含量(p 0. 05),但总膳食纤维含量保持稳定;显微观察显示发酵可降低膳食纤维粒径,使其内部结构由原来致密的网状结构变得蓬松易碎,粒径大小降低了将近50%,发酵可改进豆渣膳食纤维水合性质,特别是水溶指数高值为对照的4. 01倍;提升吸附脂质的能力、吸附胆固醇的能力高值为对照的2. 01倍;发酵也提升了豆渣膳食纤维吸收亚硝酸盐的能力和总还原力;真菌发酵豆渣以黑曲霉改善效果最好,联合发酵豆渣以黑曲霉结合乳酸菌发酵效果最好。  相似文献   

16.
利用豆渣生产高活性膳食纤维的研究   总被引:14,自引:1,他引:14  
本文介绍了以豆渣为原料,采用微生物发酵和动态超高压均质处理对大豆膳食纤维进行改性研究,得到了可溶性膳食纤维含量达30%以上的高活性大豆膳食纤维。研究了不同发酵条件和不同处理压力对提高豆渣中可溶性膳食纤维(SDF)含量的影响,结果表明利用发酵法可提高可溶性膳食纤维的含量达15%以上,动态超高压均质处理法可将可溶性膳食纤维含量提高到35%以上,而发酵处理后使得超高压均质处理提高可溶性膳食纤维含量更容易,在均质压力为40MPa下均质即可将可溶性膳食纤维含量提高到30%。  相似文献   

17.
豆渣膳食纤维的体外吸附性能   总被引:3,自引:0,他引:3  
以大豆豆渣为原料,提取得到可溶性膳食纤维(soluble dietary fiber, SDF)、不溶性膳食纤维(insolubledietary fiber,IDF)、果胶、半纤维素A(hemicellulose A,HCA)和半纤维B(hemicellulose B,HCB),分别研究其对葡萄糖、丙烯酰胺、NO2-及重金属的体外吸附能力。结果表明:膳食纤维的吸附能力与膳食纤维的种类、被吸附物的种类以及溶液的pH值等多种因素有关。豆渣膳食纤维中可溶性组分(SDF、HCB、果胶)的吸附能力较不溶性组分(IDF、HCA)强;豆渣膳食纤维对葡萄糖、NO2-、重金属有较强的吸附能力,但吸附丙烯酰胺的能力较弱;豆渣膳食纤维对NO2-、丙烯酰胺等物质在胃中(pH 2)的吸附能力大于在肠道中(pH 7)的吸附能力,而对重金属阳离子的吸附能力则在肠道中更强。  相似文献   

18.
研究脱蛋白方法结合超微粉碎处理豆渣对其化学组成和功能特性的影响,当豆渣样品进行酶或碱处理时,它的总膳食纤维(TDF),不溶性膳食纤维(IDF)的质量分数分别增加了18.6-32.9%,22.6-34.4%,并且它们的功能特性(持水力,膨胀力和持油力)显著(p < 0.05)增加,但可溶性膳食纤维(SDF)质量分数与处理前豆渣没有显着差异。经超微粉随后,随着豆渣膳食纤维粒径减小,豆渣膳食纤维中可溶性膳食纤维质量分数提高了170% 以上,持水力和膨胀力显着下降(p < 0.05),持油力先下降后上升。结果表明,应用碱性蛋白酶和超微粉碎进行前处理,得到的豆渣中TDF和SDF的含量最高,这可能是在食品中加工高质量膳食纤维的潜在方法。  相似文献   

19.
田成  莫开菊  汪兴平 《食品科学》2010,31(14):148-152
为研究磷酸盐改性水不溶性豆渣膳食纤维的工艺条件及膳食纤维结构,以持水性作为特征性考察指标,通过单因素试验、正交试验优化其改性的工艺条件,通过X 射线衍射及电镜观察膳食纤维的结构。结果表明:水不溶性豆渣膳食纤维改性的最佳工艺参数为磷酸氢二钠溶液质量浓度0.1g/100mL、料液比1:60(g/mL)、处理时间1h、处理温度50℃,此条件下的膳食纤维持水性达11.95g/g;磷酸盐改性水不溶性豆渣膳食纤维的结构得到部分改善,表面略有褶皱,结构疏松,带有明显的片状结构,颗粒的表面出现蜂窝状结构,且分布均匀,改性后的水不溶性豆渣膳食纤维在34.76°出现较明显的衍射强度峰,其结晶度为30.57%。  相似文献   

20.
分析了高湿挤压操作条件对含豆渣组织蛋白中膳食纤维的影响,为评价高湿挤压生产高膳食纤维组织蛋白产品营养特性提供理论基础。以豆渣为主要原料,采用双螺杆挤压机在豆渣含量(0%~60%)、物料水分(50%~60%)、挤压温度(130℃~150℃)条件下挤压制备组织蛋白。应用酶-重量法测定组织蛋白中总膳食纤维、不溶性膳食纤维和可溶性膳食纤维含量,比较挤压前后产品膳食纤维含量变化,分析挤压条件对可溶性膳食纤维含量的影响。结果表明,豆渣可显著增加组织蛋白产品膳食纤维含量(P0.05);物料水分增加不利于不溶性膳食纤维降解,挤压温度升高促进不溶性膳食纤维降解。含豆渣组织蛋白膳食纤维丰富,高湿挤压可在一定程度上提高产品中可溶性膳食纤维含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号