共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
为了有效提高混凝土抗压强度的预测精准度,利用粒子群算法优化BP神经网络初始权值和阈值,建立了混凝土抗压强多因子PSO-BP预测模型。模型以每立方混凝土中水泥、高炉矿渣粉、粉煤灰、水、减水剂、粗集料和细集料的含量以及置放天数为输入参数,混凝土抗压强度值作为输出参数,不仅可以克服BP算法收敛速度慢和易陷入局部极值的缺陷,而且模型的学习能力、泛化能力和预测精度都有了很大的提高。以UCI数据库中的Concrete CompressiveStrength数据集为例进行仿真测试,结果表明:PSO-BP模型预测精度较BP、GA—BP模型分别提高了8.26%和2.05%,验证了PSO—BP模型在混凝土抗压强度预测中的有效性。 相似文献
3.
基于PSO和BP复合算法的模糊神经网络控制器 总被引:1,自引:0,他引:1
为了克服单独应用粒子群算法(PSO)或BP算法训练模糊神经网络控制器参数时存在的缺陷,提出了一种训练模糊神经网络参数的PSO+BP算法。该算法将二者相结合,即在PSO算法中加入一个BP算子,以充分利用PSO算法的全局寻优能力和BP算法的局部搜索能力,从而更有效地提高其收敛速度、训练效率和提高该模糊神经网络控制器的控制效果。最后的仿真实验结果验证了该基于PSO+BP复合算法的模糊神经网络控制器的有效性和可行性。 相似文献
4.
5.
针对传统预测控制算法在解决非线性系统控制问题时,存在难以建立精确的数学模型、控制精度不高等缺点,提出一种新的非线性系统预测控制方案。以多BP神经网络作为并行预测模型,克服误差积累以及网络规模庞大的缺点;运用粒子群优化(PSO)算法完成非线性预测控制的滚动优化。仿真表明,该方案的控制效果比常规动态矩阵控制效果有所提高,该方案是可行和有效的。 相似文献
6.
基于粒子群优化的BP网络学习算法 总被引:25,自引:0,他引:25
本文提出一种新颖的基于粒子群优化的BP网络学习算法,该算法是一种全局随机优化算法。用Iris分类问题,将所提出的算法与BP算法作了对比实验。实验结果表明:所提出的算法性能优于BP算法,而且具有良好的收敛性。 相似文献
7.
基于改进的QPSO训练BP网络的网络流量预测* 总被引:2,自引:0,他引:2
为了提高网络流量预测的精度,采用一种改进的QPSO算法训练BP神经网络对网络流量数据的时间序列进行建模预测。针对标准的QPSO算法不可避免地出现早熟的不足,提出一种新的基于参数自适应的QPSO算法,较好地避免了粒子群的早熟,提高了算法的全局收敛性能。仿真实验结果表明,与PSO训练的BP网络、QPSO训练的BP网络作为预测模型相比,该模型具有更高的预测精度及很好的稳定性。 相似文献
8.
9.
对城市用水量的科学预测是城市供水管网规划与设计基础,可以给供水系统安排生产与优化调度提供科学依据。由于传统BP神经网络应用于城市用水量预测存在训练收敛速度过慢、预测精度较低等缺陷,本文提出基于改进粒子群优化BP神经网络的城市用水量预测方法。实验结果表明,该方法的训练收敛速度、预测精度明显优于传统BP神经网络、粒子群优化BP网络的方法,可以满足供水系统生产与调度的实际需要。 相似文献
10.
崔乃丹 《自动化技术与应用》2022,41(4):148-150
本次通过基于粒子群优化算法与BP神经网络相结合的方式对高铁客运量进而预测,利用粒子群优化算法对BP神经网络进行优化与训练,通过经过改进的BP神经网络对高铁客运量进行预测.经实验研究发现,本次研究所提出的预测算法比常规BP神经网络模型预测精度更高,在样本数据量较少的情况下有明显的应用优势. 相似文献
11.
为了提高动态手势学习训练速度和识别准确率,本文提出一种基于粒子群优化BP神经网络的动态手势识别方法。首先基于自然人机交互需要,定义一套基于机器视觉的动态手势模型;在获取指尖运动轨迹的基础上,提取动态手势的特征向量作为神经网络的输入;利用改进的PSO算法训练BP神经网络,得到神经网络的权值和阈值;最后利用训练过的神经网络识别基于机器视觉的动态手势。测试结果表明:改进的PSO算法能够提高神经网络训练速度和精度,进而提高动态手势识别准确率。 相似文献
12.
粒子群算法优化BP神经网络的粉尘浓度预测 总被引:1,自引:0,他引:1
对综采工作面粉尘浓度预测的方法是建立BP神经网络预测模型.为了提高算法的拟合能力及预测的准确度,使用粒子群算法对目标函数进行改进,即将粒子群算法寻到的最优权值和阈值应用于神经网络预测模型求综采工作面粉尘浓度.比较分析新的预测模型与常用的灰色模型以及标准的BP神经网络算法,结果表明粒子群优化的神经网络算法的拟合能力和预测的准确率显著提高. 相似文献
13.
14.
为了克服粒子群优化算法本身存在的早熟和局部收敛的固有问题,在描述了BP神经网络的基本结构的基础上,介绍了粒子群优化算法(PS0)的基本概念,并通过对二者优缺点的分析与比较,结合二者的优势,将粒子矢量位移应用到PS0算法中,并在此基础上,用改进的PS0算法对BP网络进行训练,还利用某商场的部分消费数据进行了实验。结果表明,基于改进的PS0算法的BP网络在收敛速度和精度上都比基于传统的PSO算法好。 相似文献
15.
段向军 《计算技术与自动化》2011,30(2):115-117
针对BP神经网络作为人脸识别分类器具有的收敛速度慢、易陷入局部极小等缺点,提出利用改进的粒子群优化算法(PSO)改善BP网络训练的方法,建立种基于改进的PSO-BP神经网络,更合理有效地确定神经网络的连接权值和阈值,将其应用到人脸识别系统中的分类环节中,并与单独使用BP神经网络分类的结果相比较,实验表明,该方法识别速度... 相似文献
16.
段艳明 《计算机技术与发展》2014,(8):238-241
针对PID控制中的参数整定的难点及基本BP算法收敛速度慢、易陷入局部极值的问题,提出利用PSO算法的全局寻优能力和较强的收敛性来改进BP网络的权值调整新方法,从而对PID控制的比例、积分、微分进行优化控制。该方法是在基本BP算法的误差反向传播的基础上,使粒子位置的更新对应BP网络的权值和阈值的调整,既充分利用了PSO算法的全局寻优性又较好地保持了BP算法本身的反向传播特点。仿真结果表明基于PSO算法的BP神经网络的PID优化控制具有较好的性能和自学习、自适应性。 相似文献
17.
针对标准BP神经网络中收敛速度慢以及易陷入局部最优解等问题,利用粒子群算法的全局搜索性,将粒子群算法应用到BP神经网络训练中建立了PSO-BP神经网络模型,结果表明改进模型不仅可以克服传统BP网络收敛速度慢和易陷入局部权值的局限问题,而且很大程度地提高了结果精度和BP网络学习能力,将此模型应用到结晶器漏钢预报系统中,并用某钢厂采集到的历史数据对该模型进行训练与测试,与标准BP神经网络测试结果进行分析与比较,实验表明PSO-BP网络模型预报更加实时、准确,具有很好的应用前景. 相似文献
18.
针对BP神经网络易陷入局部最小、收敛速度慢的问题,研究了基于粒子群优化的学习算法,给出了具体的算法方案设计,并将其应用于图像复原。首先用高斯噪声对无噪图像进行模糊处理;然后将结果和原图像组成训练对,用于训练优化后的神经网络;最后利用训练好的神经网络对测试图像进行复原,从而达到去除噪声的目的。仿真结果表明,与BP神经网络相比,PSO-BP算法收敛速度快,迭代次数少,复原的图像在归一化均方误差(NMSE)和峰值信噪比(PSNR)的效果更好。 相似文献
19.
20.
摄像机标定是从二维图像提取三维空间信息的关键步骤,标定的精度直接关系到三维重构结果的逼真程度。为了有效解决传统摄像机标定算法中的多参数、计算费时费力等问题,提高摄像机标定的精度和速度,将粒子群遗传算法(particle swarm optimization genetic algorithm,PSO-GA)应用于摄像机标定中。对参数进行粒子群算法优化后,再使用遗传算法中的选择、交叉和变异等操作进行参数优化,以实现粒子群算法与遗传算法的融合。结合后的算法全局搜索能力较强,收敛速度更快,优化能力与鲁棒性得以提高。同时,基于神经网络的摄像机标定方法所能覆盖的标定空间十分有限,提出了一种采用粒子群遗传算法优化BP神经网络的摄像机标定方法,以解决传统摄像机标定方法难以解决的问题。实验数据表明,基于粒子群遗传算法的BP神经网络标定是一种可行的方法,标定精度高,收敛速度快,泛化能力强。 相似文献