首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Large-scale molecular dynamics simulations were performed to study the sliding process of rough surfaces with and without lubricant. In the dry contact, a linear relationship has been observed between the load and the contact area for surfaces with large root mean square (RMS) roughness. However, it becomes nonlinear when the RMS is small. In the presence of adhesion, small roughness results in a large friction force when the surfaces are flattened and the contact area reaches 60 %. In order to confirm this observation, nonadhesive models have been established with an observation that under the combined influence from roughness and adhesion, the contact area plays a crucial role to determine whether the dry sliding is under the domination of roughness or adhesion. In the lubricated sliding, an increase in friction force has been found for the partially lubricated condition because the asperity contact still accounts for a great deal of resisting force. Besides, the lubricant exerts a comparable resisting force to the sliding.  相似文献   

2.
We introduce a model AFM tip/substrate system that includes full atomistic detail as well as system compliance to study the transitions between three regimes of atomic friction: smooth sliding, stick-single slip, and stick-multiple slip. We characterize these atomic friction regimes in terms of static and dynamic effects, and investigate how the slip modes affect the mean friction. Molecular statics calculations show that reduced-order model predictions of possible transitions between slip regimes are generally adequate for a fully atomistic system, even for complex reaction coordinates. However, molecular dynamics simulations demonstrate that, while static features of the system govern possible slip regimes, dynamic effects ultimately determine actual transitions between slip regimes.  相似文献   

3.
表面粗糙度对滑动电接触磨损率的影响   总被引:1,自引:0,他引:1  
在电气化铁路弓网系统中,磨损率是衡量列车运行状态与接触导线使用状态的重要指标。为了充分模拟弓网系统中磨损率情况,利用自行搭建的滑动电接触摩擦磨损试验机对滑板和接触导线进行摩擦磨损试验,分析滑板表面粗糙度、法向压力、接触电流与运行速度对磨损率的影响。得出结论:滑板磨损率随滑板初始表面粗糙度、接触电流、法向压力、运行速度的增加而增加,而高载荷下粗糙度对于磨损率的影响降低;滑板摩擦从磨合期进入稳定摩擦期存在一个临界表面粗糙度,当滑板初始表面粗糙度值等于临界粗糙度值时,其磨损率最低;不同初始表面粗糙度的滑板在跑合期内磨损过程不同,在稳定摩擦期内磨损过程趋于一致,且摩擦试验后滑板表面粗糙度也接近。  相似文献   

4.
Interlocking asperities are shown to have a fundamental effect on the friction behavior of contacting solids through theoretically derived shear force–displacement relationship. The key aspect of this relationship is the asperity contact orientation probability distribution obtained using the random process theory in terms of measurable surface roughness parameters. Thus, the obliquity of surface asperity contact is included in the contact shear analysis in a fundamental manner. The interlocking asperities are found to result in a normal load-dependent friction coefficient for a contact. The interlocking also affects contact partial slip and the shear displacements that precede sliding. The derived relationship can be used to evaluate factors, such as asperity adhesion, plasticity, damage, normal-shear coupling and scale dependency, which are difficult to separate in experiments and atomistic simulations.  相似文献   

5.
Computational e ciency and accuracy always conflict with each other in molecular dynamics(MD) simulations. How to enhance the computational e ciency and keep accuracy at the same time is concerned by each corresponding researcher. However, most of the current studies focus on MD algorithms, and if the scale of MD model could be reduced, the algorithms would be more meaningful. A local region molecular dynamics(LRMD) simulation method which can meet these two factors concurrently in nanoscale sliding contacts is developed in this paper. Full MD simulation is used to simulate indentation process before sliding. A criterion called contribution of displacement is presented, which is used to determine the e ective local region in the MD model after indentation. By using the local region, nanoscale sliding contact between a rigid cylindrical tip and an elastic substrate is investigated. Two two?dimensional MD models are presented, and the friction forces from LRMD simulations agree well with that from full MD simulations, which testifies the e ectiveness of the LRMD simulation method for two?dimensional cases. A three?dimensional MD model for sliding contacts is developed then to show the validity of the LRMD simulation method further. Finally, a discussion is carried out by the principles of tribology. In the discussion, two two?dimensional full MD models are used to simulate the nanoscale sliding contact problems. The results indicate that original smaller model will induce higher equivalent scratching depth, and then results in higher friction forces, which will help to explain the mechanism how the LRMD simulation method works. This method can be used to reduce the scale of MD model in large scale simulations, and it will enhance the computational e ciency without losing accuracy during the simula?tion of nanoscale sliding contacts.  相似文献   

6.
The effect of atomic-scale roughness on adhesion between carbon-based materials is examined by both simulations and experimental techniques. Nanoscale asperities composed of either diamond-like carbon or ultrananocrystalline diamond are brought into contact and then separated from diamond surfaces using both molecular dynamics simulations and in situ transmission electron microscope (TEM)-based nanoindentation. Both techniques allow for characterization of the roughness of the sharp nanoasperities immediately before and after contact down to the subnanometer scale. The root mean square roughness for the simulated tips spanned 0.03 nm (atomic corrugation) to 0.12 nm; for the experimental tips, the range was 0.18–1.58 nm. Over the tested range of roughness, the measured work of adhesion was found to decrease by more than an order of magnitude as the roughness increased. The dependence of adhesion upon roughness was accurately described using a simple analytical model. This combination of simulation and experimental methodologies allows for an exploration of an unprecedented range of tip sizes and length scales for roughness, while also verifying consistency of the results between the techniques. Collectively, these results demonstrate the high sensitivity of adhesion to interfacial roughness down to the atomic limit. Furthermore, they indicate that care must be taken when attempting to extract work of adhesion values from experimental measurements of adhesion forces.  相似文献   

7.
Atomic stick–slip friction has been predicted by molecular dynamics simulation and observed in experiments. However, direct quantitative comparison of the two has thus far not been possible because of the large difference between scanning velocities accessible to simulations and experiments. In general, the slowest sliding speeds in MD simulations are at least five orders of magnitude larger than the upper limit available to experimentalists. To take a step toward bridging this gap, we have applied parallel replica dynamics, an accelerated molecular dynamics method, to the simulation of atomic stick–slip. The method allows molecular simulations to run parallel in time in order to extend their duration, thereby enabling lower scanning velocities. We show here that this method is able to predict atomic stick–slip friction accurately and efficiently at scanning speeds several orders of magnitude slower than standard molecular dynamics simulations. The accuracy and usefulness of this method is illustrated by correct prediction of the logarithmic dependence of friction on velocity.  相似文献   

8.
Aluminum is widely used in electrical contacts due to its electrical properties and inexpensiveness when compared to copper. In this study, we investigate the influence of operating conditions like contact load (pressure), sliding speed, current, and surface roughness on the electrical and tribological behavior of the interface. The tests are conducted on a linear, pin-on-flat tribo-simulator specially designed to investigate electrical contacts under high contact pressures and high current densities. Control parameters include sliding speed, load, current, and surface roughness. The response of the interface is evaluated in the light of coefficient of friction, contact resistance, contact voltage, mass loss of pins, and interfacial temperature rise. As compared to sliding speed, load, and roughness, current is found to have the greatest influence on the various measured parameters. Under certain test conditions, the interface operates in a “voltage saturation” regime, wherein increase in current do not result in any increase in contact voltage. Within the voltage saturation regime the coefficient of friction tends to be lower, a result that is attributed to the higher temperatures associated with the higher voltage (and resulting material softening). Higher interfacial temperatures also appear to be responsible for the higher wear rates observed at higher current levels as well as lower coefficients of friction for smoother surfaces in the presence of current.  相似文献   

9.
Computational efficiency and accuracy always conflict with each other in molecular dynamics (MD) simulations. How to enhance the computational efficiency and keep accuracy at the same time is concerned by each corresponding researcher. However, most of the current studies focus on MD algorithms, and if the scale of MD model could be reduced, the algorithms would be more meaningful. A local region molecular dynamics (LRMD) simulation method which can meet these two factors concurrently in nanoscale sliding contacts is developed in this paper. Full MD simulation is used to simulate indentation process before sliding. A criterion called contribution of displacement is presented, which is used to determine the effective local region in the MD model after indentation. By using the local region, nanoscale sliding contact between a rigid cylindrical tip and an elastic substrate is investigated. Two two-dimensional MD models are presented, and the friction forces from LRMD simulations agree well with that from full MD simulations, which testifies the effectiveness of the LRMD simulation method for two-dimensional cases. A three-dimensional MD model for sliding contacts is developed then to show the validity of the LRMD simulation method further. Finally, a discussion is carried out by the principles of tribology. In the discussion, two two-dimensional full MD models are used to simulate the nanoscale sliding contact problems. The results indicate that original smaller model will induce higher equivalent scratching depth, and then results in higher friction forces, which will help to explain the mechanism how the LRMD simulation method works. This method can be used to reduce the scale of MD model in large scale simulations, and it will enhance the computational efficiency without losing accuracy during the simulation of nanoscale sliding contacts.  相似文献   

10.
基于分形理论的圆弧齿轮滑动摩擦接触力学模型   总被引:1,自引:0,他引:1  
考虑到圆弧齿线圆柱齿轮传动接触之间的滑动摩擦与微凸体的连续性变形,结合分形理论和Hertz接触理论建立圆弧齿线圆柱齿轮的滑动摩擦接触力学模型,通过模型数值分析与ANSYS WORKBENCH分析的最大接触应力结果对比,证明该模型所反映圆弧齿线圆柱齿轮接触应力状态的正确性。该模型中,载荷与真实接触面积之间关系不仅与分形维数和特征尺度系数有关,还与齿轮节点曲率和齿轮齿线半径有关。同时,理论计算表明,分形维数一定时,真实接触面积随着载荷的增大而增大;载荷一定时,真实接触面积随着分形维数的增大先增大后减小,随着特征尺度系数的增大而减小;摩擦因数对真实接触面积的影响不大。该模型的建立为圆弧齿线圆柱齿轮工作状态的研究及强度分析提供了理论依据。  相似文献   

11.
基于分形理论的滑动摩擦表面接触力学模型   总被引:11,自引:0,他引:11  
依据分形理论,考虑微凸体变形特征及摩擦作用的影响建立滑动摩擦表面接触力学模型。采用一个三次多项式来表达弹塑性变形微凸体的接触压力与接触面积的关系,从而满足在变形状态转变临界点处的微凸体接触面积与接触压力转化皆是连续和光滑的条件。推导出滑动摩擦表面临界弹性变形微接触面积、临界塑性变形微接触面积、量纲一真实接触面积的数学表达式。理论计算结果表明,表面形貌一定时,真实接触面积随着载荷的增大而增大;载荷一定时,真实接触面积随着特征尺度系数的增大而减小,随着分形维数的增大先增大后减小;当表面较粗糙时,摩擦因数对真实接触面积的影响很小;随着表面光滑程度的增大,摩擦因数对真实接触面积的影响增大,真实接触面积随着摩擦因数的增大而增大,特别是当摩擦因数较大时,真实接触面积增大的幅度也较大。接触力学模型的建立,为研究滑动摩擦表面间的摩擦磨损性能提供了依据。  相似文献   

12.
The ultrasonic friction mode of an atomic force microscope is a scanning probe technique allowing one to analyze the load and velocity dependence of friction. The technique is based on evaluation of the resonance behavior of an AFM cantilever when in contact with a vibrating sample surface. The effect of load and lateral displacement of the sample surface on the shape of the torsional resonance spectra of the AFM cantilever is evaluated under dry and lubricated sliding conditions. A characteristic flattening of the torsional resonance curve has been observed at large surface displacements, resulting from the onset of sliding friction in the AFM cantilever–sample surface contact. An analytical model describing torsional cantilever vibrations in Hertzian contact with a sample surface is presented, and numerical simulations have been carried out in order to confirm that the flattening of the resonance curve occurs with the onset of the sliding friction in the contact.  相似文献   

13.
Velocity dependent friction laws in contact mode atomic force microscopy   总被引:1,自引:0,他引:1  
Stark RW  Schitter G  Stemmer A 《Ultramicroscopy》2004,100(3-4):309-317
Friction forces in the tip–sample contact govern the dynamics of contact mode atomic force microscopy. In ambient conditions typical contact radii between tip and sample are in the order of a few nanometers. In order to account for the large interaction area the dynamics of contact mode atomic force microscope (AFM) is investigated under the assumption of a multi-asperity contact interface between tip and sample. Thus, the kinetic friction force between tip and sample is the product of the real contact area between both solids and the interfacial shear strength. The velocity strengthening of the lateral force is modeled assuming a logarithmic relationship between shear-strength and velocity. Numerical simulations of the system dynamics with this empirical model show the existence of two different regimes in contact mode AFM: steady sliding and stick–slip where the tip undergoes periodically stiction and kinetic friction. The state of the system depends on the scan velocity as well as on the velocity dependence of the interfacial friction force between tip and sample. Already small viscous damping contributions in the tip–sample contact are sufficient to suppress stick–slip oscillations.  相似文献   

14.
This paper presents an experimental study of the friction noise, between two rough and dry flat surfaces. The domain of interest is the dry contact under light pressure where the roughness is the dominant cause of noise. The results show that, for sliding rough surfaces under light load, the fundamental mechanism of radiated noise is the presence of shocks occurring between antagonist asperities of sliding surfaces. The radiated roughness noise is controlled simultaneously by the detailed topography of the surfaces in contact, the sliding speed and the dynamics of the surfaces. In terms of topography and sliding speed, it was shown that the roughness noise is simultaneously an increasing linear function of the logarithm of the surface roughness and the sliding speed. In terms of dynamics, the roughness noise is generated for light dynamical coupling. Hence, the natural modes of samples are stiffer than the contact and therefore the resulting vibrations are not affected by the additional rigidity. The deformation of surfaces during contact is very light and its magnitude is negligible compared to the surface roughness.  相似文献   

15.
Müser  M.H. 《Tribology Letters》2001,10(1-2):15-22
A generic model for frictional forces between two monoatomic crystals is investigated by molecular dynamics simulations. Two solids, each composed of several atomic layers, are brought into contact and moved against each other. The mechanisms that lead to finite pinning (static friction) forces are analyzed by varying the geometry, the interfacial interaction, and the externally applied force. Material transfer leading to welded junctions is seen to be responsible for friction between strongly adhering surfaces. Chemically passivated surfaces pin if they deform plastically. In no region of the model's parameter range can finite frictional forces be attributed to multistable elasticity. Such wearless pinning mechanisms play the predominant role in Frenkel–Kontorova and Tomlinson models. In the parameter range where pinning is observed, externally driven sliding induces wear at the interface.  相似文献   

16.
M.P. Rapetto  A. Almqvist  R. Larsson  P.M. Lugt 《Wear》2009,266(5-6):592-595
A model previously developed at LTU was used in order to perform numerical simulations of normal, dry, friction free, linear elastic contact of rough surfaces. A variational approach was followed and the FFT-technique was used to speed up the numerical solution process. Five different steel surfaces were measured using a Wyko optical profilometer and several 2D profiles were taken. The real area of contact and the pressure distribution over the contact length were calculated for all the 2D profiles. A new slope parameter was defined. An artificial neural network was applied to determine the relationship between the roughness parameters and the real area of contact. The trained model was able to capture the dependence of the real area of contact on the roughness parameters. The ability of the neural network to generalize on unseen data was tested. The neural network was able to prove the correlation between the roughness parameters and the real area of contact.  相似文献   

17.
A molecular scale atomic force microscopy study of friction and elasticity is presented on a one-component lipid bilayer system - a model boundary lubricant. With a real area of contact on the order of the lattice spacings of the sample, the elastic compliances of single lipid molecules are recorded - the first report of a molecularly resolved elasticity map. The anisotropic and highly ordered structure of the lipid bilayer has been observed to cause contrast information in friction on molecularly flat areas, and to be dependent on the sliding direction. This anisotropic behavior of friction has been measured to be independent of normal elastic compliances. Only asymmetric indentation which causes in-plane compliances leads to heterogeneities in the elasticity map. In this fundamental study of friction, the effects of adhesion and elasticity are discussed.  相似文献   

18.
Most studies on tribology of polymer materials are traditionally performed on small-scale test specimens. However, to obtain data relevant for practical design of polymer parts in highly loaded bearings or sliding systems one must simulate real working conditions as close as possible on laboratory scale. In present work, a large-scale test rig has been used for determinating friction of a commercial polyoxymethylene homopolymer (POM-H). Test samples with contact area 22500 mm2 are submitted to a reciprocating motion with stroke 230 mm under different contact pressures from 8 to 150 MPa and sliding velocity of 5 mm/s. Test results are compared to those obtained on a traditional cylinder-on-plate configuration and reveal lower friction on large-scale tests. However, general laws predicting the coefficient of friction as a function of normal loads cannot be used for extrapolation. Bulk and flash temperatures are calculated to explain transitions in friction mechanisms on both testing scales. Local surface temperatures are higher under large-scale sliding and allow for surface melting, which is not observed on small-scale tests. Although, sliding conditions implying an identical flash temperature induce polymer transfer only on large-scale tests, while no transfer occurs on small-scale tests. Even an artificial increase in small-scale bulk temperatures allowing for polymer transfer, is not able to provide low friction as observed on large-scale. An appropriate combination of load and sliding velocity is used for linear extrapolation of friction values, indicating the additional importance of bulk temperatures. When the polymer softening point is exceeded, creep at the polymer surface contributes to low friction.  相似文献   

19.
Enhanced friction model for high-speed right-angle gear dynamics   总被引:1,自引:0,他引:1  
The modeling of elastohydrodynamic lubrication friction and the analysis of its dynamic effect on right-angle gears, such as hypoid and spiral bevel types are performed in the present study. Unlike the classically applied empirical constant coefficient of friction at the contacting tooth surfaces, the enhanced physics-based gear mesh friction model is both spatial and time-varying. The underlying formulation assumes mixed elastohydrodynamic lubrication (EHL) condition in which the division and load distribution between the full film and asperity contact zones are determined by the film thickness ratio and load sharing coefficient. In the proposed time-varying friction model, the calculation of friction coefficient is performed at each contact grid inside the instantaneous contact area that is being subjected to mineral oil lubrication. The effective friction coefficient and directional parameters synthesized from the net frictional and normal contact forces are then incorporated into a nonlinear time-varying right-angle gear dynamic model. Using this model, the effect of friction on the gear dynamic response due to the transmission error and mesh excitations is analyzed. Also, parametric studies are performed by varying torque, surface roughness and lubrication properties to understand the salient role of tooth sliding friction in gear dynamics. The simulation results are included. But experimental verification is needed.  相似文献   

20.
The nanotribological properties of a hydrogen‐terminated diamond(111)/tungsten‐carbide interface have been studied using ultra‐high vacuum atomic force microscopy. Both friction and local contact conductance were measured as a function of applied load. The contact conductance experiments provide a direct and independent way of determining the contact area between the conductive tungsten‐carbide AFM tip and the doped diamond sample. We demonstrate that the friction force is directly proportional to the real area of contact at the nanometer‐scale. Furthermore, the relation between the contact area and load for this extremely hard heterocontact is found to be in excellent agreement with the Derjaguin–Müller–Toporov continuum mechanics model. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号