首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Materials Science: Materials in Electronics - Perovskite solar cells have become a very researchable topic because of their interesting properties and very high-power conversion...  相似文献   

2.
Journal of Materials Science: Materials in Electronics - Fabrication and characterization of methylammonium lead iodide perovskite solar cells incorporated with methylammonium bromide (MABr),...  相似文献   

3.
4.
The efficiency of perovskite solar cells (PSCs) has been improved from 9.7 to 19.3%, with the highest value of 20.1% achieved in 2014. Such a high photovoltaic performance can be attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths of the hybrid lead halide perovskite materials. In this review, some fundamental details of hybrid lead iodide perovskite materials, various fabrication techniques and device structures are described, aiming for a better understanding of these materials and thus highly efficient PSC devices. In addition, some advantages and open issues are discussed here to outline the prospects and challenges of using perovskites in commercial photovoltaic devices.  相似文献   

5.
Abstract

The efficiency of perovskite solar cells (PSCs) has been improved from 9.7 to 19.3%, with the highest value of 20.1% achieved in 2014. Such a high photovoltaic performance can be attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths of the hybrid lead halide perovskite materials. In this review, some fundamental details of hybrid lead iodide perovskite materials, various fabrication techniques and device structures are described, aiming for a better understanding of these materials and thus highly efficient PSC devices. In addition, some advantages and open issues are discussed here to outline the prospects and challenges of using perovskites in commercial photovoltaic devices.  相似文献   

6.
7.
周瑾璟  钟敏 《复合材料学报》2022,39(5):1937-1955
铅卤钙钛矿太阳能电池因其优良的光电转换效率以及相对低廉的制备成本而受到广泛关注。然而铅卤钙钛矿太阳能电池的长期稳定性限制了其商业化的进程。界面非辐射复合导致铅卤钙钛矿太阳能电池产生能量损失、影响器件稳定性,是造成器件性能恶化的主要原因。界面工程作为一种有效的策略被用于抑制界面非辐射复合,在制备高效稳定的铅卤钙钛矿太阳能电池方面取得了切实的成效。本文阐述了铅卤钙钛矿太阳能电池的工作原理以及界面上的非辐射复合过程,分析了界面非辐射复合产生的原因,总结了近期n-i-p正式结构铅卤钙钛矿太阳能电池中界面工程的研究进展,讨论了其作用机制。基于目前铅卤钙钛矿太阳能电池中的界面工程发展现状,对其未来的发展方向进行了展望。  相似文献   

8.
In a few years only, solar cells using hybrid organic–inorganic lead halide perovskites as optical absorber have reached record photovoltaic energy conversion efficiencies above 20%. To reach and overcome such values, it is required to tailor both the electrical and optical properties of the device. For a given efficient device, optical optimization overtakes electrical one. Here, we provide a synthetic review of recent works reporting or proposing so-called optical management approaches for improving the efficiency of perovskite solar cells, including the use of anti-reflection coatings at the front substrate surface, the design of optical cavities integrated within the device, the incorporation of plasmonic or dielectric nanostructures into the different layers of the device and the structuration of its internal interfaces. We finally give as outlooks some insights into the less-explored management of the perovskite fluorescence and its potential for enhancing the cell efficiency.  相似文献   

9.
10.
11.
Cesium lead iodide (CsPbI3),in its black perovskite phase,has a suitable bandgap and high quantum efficiency for photovoltaic applications.However,CsPbI3 tends to crystalize into a yellow non-perovskite phase,which has poor optoelectronic properties,at room temperature.Therefore,controlling the phase transition in CsPbI3 is critical for practical application of this material.Here we report a systematic study of the phase transition of one-dimensional CsPbI3 nanowires and their corresponding structural,optical,and electrical properties.We show the formation of perovskite black phase CsPbI3 nanowires from the non-perovskite yellow phase through rapid thermal quenching.Post-transformed black phase CsPbI3 nanowires exhibit increased photoluminescence emission intensity with a shrinking of the bandgap from 2.78 to 1.76 eV.The perovskite nanowires were photoconductive and showed a fast photoresponse and excellent stability at room temperature.These promising optical and electrical properties make the perovskite CsPbI3 nanowires attractive for a variety of nanoscale optoelectronic devices.  相似文献   

12.
钙钛矿太阳能电池具有材料成本低廉、生产工艺简单、光电转换效率高等优点,发展前景十分光明。碳材料因其价格低廉、高导电性、疏水性和化学稳定性等特点,被应用在钙钛矿太阳能电池的各个组成部分,用于提高电池性能和降低成本。本文根据应用在钙钛矿太阳能电池中的碳材料的维数进行分类,分别介绍了零维的C60、碳量子点和石墨烯量子点,一维的碳纳米管,二维的石墨烯及其衍生物、石墨炔和三维的石墨等在钙钛矿太阳能电池中的应用,对于将来实现钙钛矿太阳能电池的低成本商业化和大规模制造具有重要意义。  相似文献   

13.
14.
Controlled ZnO nanostructures were synthesized via spin-coating and in situ thermal decomposition processing using ZnO paster with/without zinc acetate as precursor. The perovskite CH3NH3PbI3 solar cells (PSCs) based on these ZnO nanostructures were fabricated and their photovoltaic performances have also been investigated. Effects of zinc acetate concentration on morphologies of ZnO nanostructures and the photovoltaic properties of corresponding PSCs have been discussed. Interestingly, the morphologies of ZnO nanostructures were varied from separate nanoparticles to interconnect net-like nanostructures and the space of ZnO nanoparticles became large when the concentration of zinc acetate was increased from 0 to 0.13 M. The space and the connection degree of ZnO nanostructure obtained from 0.05 M zinc acetate are the best choice for perovskite infiltration and charge transport, which leads to corresponding cells have highest power conversion efficiencies (PCE) of 9.30 %. Post-treatment of ZnO nanostructures improved further Voc and FF, leading to PCE to 13.1 %.  相似文献   

15.
16.
Lead-halide perovskite solar cells (PSCs) have attracted tremendous attention during the past few years owing to their extraordinary electronic and photonic properties.To improve the performances of PSCs,many researchers have focused on the compositional engineering,solvent engineering,and film fabrication methodologies.Interfacial engineering of PSCs has become a burgeoning field in which researchers aim to deeply understand the mechanisms of cells and thereby increase the efficiency and stability of PSCs.This review focuses on the interface tailoring of lead-halide PSCs,including the modification of each layer of the cell structure (i.e.,perovskite absorber,electron-transport layers,and holetransport layers) and the interfacial materials that can be introduced into the PSCs.  相似文献   

17.
Over the past decade, lead halide perovskite materials have emerged as a promising candidate for third-generation solar cells and have progressed extremely rapidly. The tunable band gap, strong absorption, high power conversion efficiency, and low cost of perovskite solar cells makes them highly competitive compared to current commercialized silicon-based and thin film-based photovoltaic technologies. However, commercial products unavoidably result in large amounts of waste and end-of-life devices which can cause serious environmental impacts. To address this issue, recycle and recovery technologies of perovskite solar cells should be researched and developed proactively. In this review, the development of perovskite solar cells and their necessary materials are first introduced. Subsequently, the potential environmental impacts of perovskite solar cells are discussed, including their stability and lifetime, use of critical materials (i.e., indium, tin, and lead), and toxicity. Accordingly, the present recycle and recovery technologies are reviewed, providing information and recommendations of key strategies for recycling and recovering. Finally, future works and strategies for recycling and recovering perovskite solar cells are proposed.  相似文献   

18.

In the conventional perovskite solar cells (PSCs) structure, TiO2 is the most commonly used electron transport layer (ETL) as it has good energy-level matching with perovskite layer. However, oxygen vacancy defects will appear when TiO2 is exposed to ultraviolet light for a long time, which would reduce its carrier extraction ability. Here, we report a simple and effective interface engineering method for TiO2 ETL to achieve a highly efficient PSCs. An ultra-thin [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) layer is used to modify the mesoporous TiO2/perovskite layer interface. The PCBM effectively passivates defects on the TiO2 surface, promotes the extraction of electrons, and improves the quality of the perovskite film. Finally, a high efficiency of 16.4% was achieved for the modified device, much higher than 13.5% of the reference devices. After storing for 12 days in an atmosphere with an air humidity of 30?±?5%, the efficiency of the PSCs maintains more than 60% of its initial level. This strategy is beneficial to enhance the efficiency and working stability of PSCs.

  相似文献   

19.
20.
Metal-halide perovskites are novel optoelectronic materials that are considered good candidates for solar harvesting and light emitting applications. In this study, we develop a reproducible and low-cost approach for synthesizing highquality cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I or Cl/Br and I/Br) nanocrystals (NCs) by direct heating of precursors in octadecene in air. Experimental results show that the particle size and composition of as-prepared CsPbX3 nanocrystals can be successfully tuned by a simple variation of reaction temperature. The emission peak positions of the as-prepared nanocrystals can be conveniently tuned from the UV to the NIR (360–700 nm) region, and the quantum yield of the as-obtained samples (green and red emissions) can reach up to 87%. The structures and chemical compositions of the as-obtained NCs were characterized by transmission electron microscopy, X-ray diffraction, and elemental analysis. This proposed synthetic route can yield large amounts of high-quality NCs with a one-batch reaction, usually on the gram scale, and could pave the way for further applications of perovskite-based light-emitting and photovoltaic solar cells.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号