首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冯东  王博  刘琦  陈朔  陈刚  胡天丁 《复合材料学报》2021,38(5):1371-1386
3D打印又称增材制造技术,是基于材料、机械控制、计算机软件等多学科交叉的先进制造技术,可得到传统加工不能制备的形状复杂制件.熔融沉积成型(FDM)是目前最通用的3D打印技术之一,具有设备简单、成本低、操作便捷等特点,广泛应用于航空航天、医疗、汽车工业等领域.本文介绍了国内外3D打印技术的整体布局、发展和规划,总结了常见...  相似文献   

2.
Polymers are becoming inseparable from biomolecule immobilization strategies and biosensor platforms. Their original role as electrical insulators has been progressively substituted by their electrical conductive abilities, which opens a new and broad scope of applications. In addition, recent advances in diagnostic chips and microfluidic systems, together with the requirements of mass-production technologies, have raised the need to replace glass by polymeric materials, which are more suitable for production through simple manufacturing processes. Conducting polymers (CPs), in particular, are especially amenable for electrochemical biosensor development for providing biomolecule immobilization and for rapid electron transfer. It is expected that the combination of known polymer substrates, but also new transducing and biocompatible interfaces, with nanobiotechnological structures, like nanoparticles, carbon nanotubes (CNTs) and nanoengineered ‘smart’ polymers, may generate composites with new and interesting properties, providing higher sensitivity and stability of the immobilized molecules, thus constituting the basis for new and improved analytical devices for biomedical and other applications. This review covers the state-of-the-art and main novelties about the use of polymers for immobilization of biomolecules in electrochemical biosensor platforms.  相似文献   

3.
The emergence of micro/nanomaterials in recent decades has brought promising alternative approaches in various biomedicine‐related fields such as pharmaceutics, diagnostics, and therapeutics. These micro/nanomaterials for specific biomedical applications shall possess tailored properties and functionalities that are closely correlated to their geometries, structures, and compositions, therefore placing extremely high demands for manufacturing techniques. Owing to the superior capabilities in manipulating fluids and droplets at microscale, microfluidics has offered robust and versatile platform technologies enabling rational design and fabrication of micro/nanomaterials with precisely controlled geometries, structures and compositions in high throughput manners, making them excellent candidates for a variety of biomedical applications. This review briefly summarizes the progress of microfluidics in the fabrication of various micro/nanomaterials ranging from 0D (particles), 1D (fibers) to 2D/3D (film and bulk materials) materials with controllable geometries, structures, and compositions. The applications of these microfluidic‐based materials in the fields of diagnostics, drug delivery, organs‐on‐chips, tissue engineering, and stimuli‐responsive biodevices are introduced. Finally, an outlook is discussed on the future direction of microfluidic platforms for generating materials with superior properties and on‐demand functionalities. The integration of new materials and techniques with microfluidics will pave new avenues for preparing advanced micro/nanomaterials with enhanced performance for biomedical applications.  相似文献   

4.
Microelectronic applications of ferroelectric thin films have undergone a resurgence. Recent advances in deposition technologies and the achievement of bulk properties in thin films have enabled successful integration and fabrication of ferroelectric random access memories onto standard integrated circuits that combine high speed, complete non-volatility and extreme radiation hardness. Current research covers both the basic and applied areas in ferroelectric material science and semiconductor device development. In this talk the evolution of solid state memory devices in conjunction with silicon technology will be described, and the increasingly important role expected from ferroelectric materials highlighted. In coupling ferroelectric thin film processing with Si technology several new problems have to be resolved. The device physics and design, the material choice for ferroelectric memories, thin film preparation and characterization, and the problems of fatigue and retention will be discussed.  相似文献   

5.
Additive Manufacturing (AM) is one of the advanced manufacturing processes, which was initially used only for visualization purpose as Rapid Prototype (RP) components. In later stages due to the advancement of materials processing in AM technology it is also used to manufacture tools and functional parts. In material science field AM is very much useful in the development of multi material component such as functionally gradient materials, heterogeneous material structures and porous material structures. These structures have tremendous applications in the field of aeronautical, automobile and medical industries. But some of the traditional techniques, which are used for fabrication of these structures, have difficulties such as uniform & random distribution, size and shape control and maximum percentage of secondary materials to the primary materials. In this work a novel methodology is introduced for the fabrication of randomly oriented multi material (ROMM) using Polyjet 3D Printing (3DP) machine, which takes into account for the distribution of plastic reinforcement in matrix elastomer as modelled using Computer Aided Design (CAD) software. CATIA VB SCRIPT has been used for ROMM CAD modelling. Stress–strain behaviour of Polyjet 3DP component (with pure elastomer and with randomly oriented plastic reinforced elastomer) is carried out in Universal Testing Machine (UTM). It has been found that ROMM with plastic reinforcement provides significantly improved stiffness compared to pure elastomer component. In addition, the stiffness is consistent among different ROMM Polyjet 3DP components, which were taken at three different orientations (Horizontal, Inclined and Vertical) from the ROMM rectangular plate domain. It shows that reinforcement is uniformly distributed. Normal distribution curve and volumetric analysis is carried out in ROMM to verify uniform and random distribution of plastic reinforcement in elastomer. Based on the experimental results, this modelling and manufacturing technique can be used for the spatial orientation of reinforcement in the ROMM component and its fabrication with better stiffness for form & fit and functional parts applications.  相似文献   

6.
Kim S  Kim Y  Kim P  Ha J  Kim K  Sohn M  Yoo JS  Lee J  Kwon JA  Lee KN 《Analytical chemistry》2006,78(21):7392-7396
Protein chips are a powerful emerging technology with extensive biomedical applications. However, the development of optimal, economical surface materials capable of maintaining the activity of embedded proteins is a challenge. Here, we introduce a new optimized, low-cost, sol-gel biomaterial for use in protein chips with femtogram-level sensitivity. A novel protein chip material with significantly improved physical properties and sensitivity was produced using unique screening and selection methods. Using this platform, the sensitive, specific detection of the interactions between an HIV antigen and its antibody and between a cyclin-kinase protein pair was observed. This study is the first to demonstrate the detection of protein-protein interactions on sol-gel microarrays and describes an important improvement in the physical properties of sol-gel-derived protein chip materials for biomedical research.  相似文献   

7.
增材制造技术自问世以来成为拓展多学科发展、实现多学科研究融合以及联结材料与产品的关键性技术,该技术颠覆了传统加工设计和制造理念,同时也是实现智能制造的重要方法。智能材料是对环境具有感知、可响应、自修复和自适应的一类材料。将智能材料与增材制造技术有机结合,可实现具有感受外部刺激或环境激活的三维智能器件的一体化制造。智能材料增材制造技术被广泛应用于个性化医疗、柔性电子和软体机器人等领域。本文对增材制造中所涉及的智能材料进行综述,介绍通过增材制造方法对金属类、高分子类和陶瓷类智能材料所带来的优势及面临的问题。增材制造技术作为实现设计、材料和结构有机融合的有效手段,将成为推动智能材料发展的关键。  相似文献   

8.
光电子时代是微电子技术、激光技术、材料科学等高速发展、综合集成的产物。20世纪90年代光电子晶体的长足进步和大功率半导体激光技术的突破,导致全固态激光器的实用化,这将促使光电子技术在21世纪前50年对更多的国家支柱产业作出重大贡献,如先进制造业的材料加工、信息业的光存储、娱乐业的激光显示、能源业的激光核聚变电站和核裂变燃料生产、军工业的激光武器升级换代等。  相似文献   

9.
《工程(英文)》2020,6(11):1232-1243
Over the past 30 years, additive manufacturing (AM) has developed rapidly and has demonstrated great potential in biomedical applications. AM is a materials-oriented manufacturing technology, since the solidification mechanism, architecture resolution, post-treatment process, and functional application are based on the materials to be printed. However, 3D printable materials are still quite limited for the fabrication of bioimplants. In this work, 2D/3D AM materials for bioimplants are reviewed. Furthermore, inspired by Tai Chi, a simple yet novel soft/rigid hybrid 4D AM concept is advanced to develop complex and dynamic biological structures in the human body based on 4D printing hybrid ceramic precursor/ceramic materials that were previously developed by our group. With the development of multi-material printing technology, the development of bioimplants and soft/rigid hybrid biological structures with 2D/3D/4D AM materials can be anticipated.  相似文献   

10.
Flexible electronics has extensively drawn attention in an extremely wide range of areas due to its unique advantages like portability, biocompatibility, wearability, and superior mechanical stability. Recently, microfluidic technology has been considered as an effective tool to fabricate flexible electronics because of its precise control and manipulation of fluids in microchannels. In this review, we provide a comprehensive and in-depth insight into flexible electronics from microfluidic technology, covering the basic elements as well as microfluidic fabrication of flexible electronics and various applications in biomedical engineering. Furthermore, an outlook for the future challenges and perspectives of the flexible electronics is proposed.  相似文献   

11.
Nature has developed high‐performance materials and structures over millions of years of evolution and provides valuable sources of inspiration for the design of next‐generation structural materials, given the variety of excellent mechanical, hydrodynamic, optical, and electrical properties. Biomimicry, by learning from nature's concepts and design principles, is driving a paradigm shift in modern materials science and technology. However, the complicated structural architectures in nature far exceed the capability of traditional design and fabrication technologies, which hinders the progress of biomimetic study and its usage in engineering systems. Additive manufacturing (three‐dimensional (3D) printing) has created new opportunities for manipulating and mimicking the intrinsically multiscale, multimaterial, and multifunctional structures in nature. Here, an overview of recent developments in 3D printing of biomimetic reinforced mechanics, shape changing, and hydrodynamic structures, as well as optical and electrical devices is provided. The inspirations are from various creatures such as nacre, lobster claw, pine cone, flowers, octopus, butterfly wing, fly eye, etc., and various 3D‐printing technologies are discussed. Future opportunities for the development of biomimetic 3D‐printing technology to fabricate next‐generation functional materials and structures in mechanical, electrical, optical, and biomedical engineering are also outlined.  相似文献   

12.
赵贺  韩叶林  刘霞  卞希慧  郭玉高  管山 《材料导报》2016,30(Z2):328-334
导电高分子材料是一种同时具有金属般良好导电性和有机材料般柔韧加工性的新型材料,在防腐、能源、传感、光电领域等方面应用广泛。综述了当前导电高分子的最新情况,并重点介绍了导电高分子材料在金属防腐、超级电容器、传感器、隐身材料、电致变色、电致发光、自愈合等7个研究方向的最新动态,对其中每一种聚合物及其复合材料的制备方法和性能效果都做了叙述,最后介绍了导电高分子材料在多个领域的应用前景。导电高分子材料作为一门新兴学科正处于发展阶段,相信导电高分子材料理论和应用的研究将进一步推动导电高分子材料领域的深入发展。  相似文献   

13.
陈思思  潘琪  苏萌  宋延林 《包装工程》2022,43(3):189-201
目的概述印刷芯片的制备方法和研究现状,开拓印刷技术的研究思路和应用场景,为印刷芯片的发展提供参考。方法从印刷材料、印刷方法和芯片应用3个方面介绍近年来印刷芯片的研究进展,重点对比各种印刷方法的关键科学问题及特点,并且指出芯片印刷的发展方向。结果基于印刷方法在大面积制备、材料兼容性、绿色环保等方面的优势,印刷芯片在显示、能源、生物、智能包装等诸多方面快速发展,不过仍然面临高精度、规模化、功能集成方面的挑战。结论通过更好地调控印刷过程中液滴成型,构筑功能材料精细微纳结构,实现高精度器件与芯片全印刷制造。未来在实现智能、自动、互联化功能芯片制造的同时,发展绿色可持续印刷新策略。  相似文献   

14.
Antibiotic‐resistant bacteria have emerged as a severe threat to human health. As effective antibacterial therapies, supramolecular materials display unprecedented advantages because of the flexible and tunable nature of their noncovalent interactions with biomolecules and the ability to incorporate various active agents in their platforms. Herein, supramolecular antibacterial materials are discussed using a format that focuses on their fundamental active elements and on recent advances including material selection, fabrication methods, structural characterization, and activity performance.  相似文献   

15.
Graphene materials have entered a phase of maturity in their development that is characterized by their explorative utilization in various types of applications and fields from electronics to biomedicine. Herein, we describe the recent advances made with graphene‐related materials in the biomedical field and the challenges facing these exciting new tools both in terms of biological activity and toxicological profiling in vitro and in vivo. Graphene materials today have mainly been explored as components of biosensors and for construction of matrices in tissue engineering. Their antimicrobial activity and their capacity to act as drug delivery platforms have also been reported, however, not as coherently. This report will attempt to offer some perspective as to which areas of biomedical applications can expect graphene‐related materials to constitute a tool offering improved functionality and previously unavailable options.  相似文献   

16.
Over the past several decades, lattice materials have been developed and used as engineering materials for lightweight and stiff industrial structures. Recent advances in additive manufacturing techniques have prompted the emergence of architected materials with minimum characteristic sizes ranging from several micrometers to hundreds of nanometers. Taking advantage of the topological design, structural optimization, and size effects of nanomaterials, various 3D micro‐/nanolattice materials composed of different materials exhibit combinations of superior mechanical properties, such as low density, high strength (even approaching the theoretical limits), large deformability, good recoverability, and flaw tolerance. As a result, some micro‐/nanolattices occupy an unprecedented area in Ashby charts with a combination of different material properties. Here, recent advances in the fabrication and mechanics of micro‐/nanolattices are described. First, various design principles and advanced techniques used for the fabrication of micro‐/nanolattices are summarized. Then, the mechanical behaviors and properties of micro‐/nanolattices are further described, including the compressive Young's modulus, strength, energy absorption, recoverability, and tensile behavior, with an emphasis on mechanistic insights and origins. Finally, the main challenges in the fabrication and mechanics of micro‐/nanolattices are addressed and an outlook for further investigations and potential applications of micro‐/nanolattices in the future is provided.  相似文献   

17.
Bioimplants are becoming increasingly important in the modern society due to the fact of an aging population and associated issues of osteoporosis and osteoarthritis. The manufacturing of bioimplants involves an understanding of both mechanical engineering and biomedical science to produce biocompatible products with adequate lifespans. A suitable selection of materials is the prerequisite for a long-term and reliable service of the bioimplants, which relies highly on the comprehensive understanding of the material properties. In this paper, most biomaterials used for bioimplants are reviewed. The typical manufacturing processes are discussed in order to provide a perspective on the development of manufacturing fundamentals and latest technologies. The review also contains a discussion on the current measurement and evaluation constraints of the finished bioimplant products. Potential future research areas are presented at the end of this paper. The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-017-0207-4  相似文献   

18.
Silk is a natural fiber renowned for its outstanding mechanical properties that have enabled the manufacturing of ultralight and ultrastrong textiles. Recent advances in silk processing and manufacturing have underpinned a re‐interpretation of silk from textiles to technological materials. Here, it is argued that silk materials—optimized by selective pressure to work in the environment at the biotic–abiotic interface—can be harnessed by human micro‐ and nanomanufacturing technology to impart new functionalities and opportunities. A critical overview of recent progress in silk technology is presented with emphasis on high‐tech applications enabled by recent innovations in multilevel modifications, multiscale manufacturing, and multimodal characterization of silk materials. These advances have enabled successful demonstrations of silk materials across several disciplines, including tissue engineering, drug delivery, implantable medical devices, and biodissolvable/degradable devices.  相似文献   

19.
The extensive research of graphene and its derivatives in biomedical applications during the past few years has witnessed its significance in the field of nanomedicine. Starting from simple drug delivery systems, the application of graphene and its derivatives has been extended to a versatile platform of multiple therapeutic modalities, including photothermal therapy, photodynamic therapy, magnetic hyperthermia therapy, and sonodynamic therapy. In addition to monotherapy, graphene‐based materials are widely applied in combined therapies for enhanced anticancer activity and reduced side effects. In particular, graphene‐based materials are often designed and fabricated as “smart” platforms for stimuli‐responsive nanocarriers, whose therapeutic effects can be activated by the tumor microenvironment, such as acidic pH and elevated glutathione (termed as “endogenous stimuli”), or light, magnetic, or ultrasonic stimuli (termed as “exogenous stimuli”). Herein, the recent advances of smart graphene platforms for combined therapy applications are presented, starting with the principle for the design of graphene‐based smart platforms in combined therapy applications. Next, recent advances of combined therapies contributed by graphene‐based materials, including chemotherapy‐based, photothermal‐therapy‐based, and ultrasound‐therapy‐based synergistic therapy, are outlined. In addition, current challenges and future prospects regarding this promising field are discussed.  相似文献   

20.
王惠芬  杨碧琦  刘刚 《材料导报》2018,32(Z1):395-399
随着大型复杂高精度航天器的迅速发展和深空探测器开发进程的加快,航天器对于轻质高强结构材料的需求异常迫切。轻合金、碳纤维复合材料等的进步为航天器结构的更新换代做出重要贡献,成为当前航天器结构材料的主体,增材制造的发展又为材料结构形式的改进提供了重要手段。文章从航天器结构材料的需求出发,分析了卫星常用金属材料与复合材料的基本性能、应用情况及存在的问题。最后结合近年来开展的预先研究和其他行业的材料发展及新兴技术的出现,对航天器用结构材料的未来发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号