首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
热杀菌是影响罐头食品营养品质和安全性最重要的一个环节,其工艺参数的开发也是罐头食品开发中时间、成本、人力投入最多的步骤之一。本文集成运用了计算流体力学、传热学、微生物学、食品营养学等多学科知识,基于有限元数值仿真技术,设计开发了一款罐头食品热杀菌工艺仿真平台,有效地解决了产品热杀菌工艺参数开发周期长、成本大等难题,为进一步探索热杀菌工艺参数最优化自动分析提供了技术基础。  相似文献   

2.
《Journal of food engineering》2007,78(4):1024-1036
Enhancing natural convective heat transfer in canned food sterilization is explored through modifications to container geometry and its orientation. A conical geometry, of equal volume and height as that of the cylinder, pointing either vertically up or down was considered. The non-Newtonian fluid, 0.85% w/w sodium carboxy-methyl cellulose (CMC), was taken as the test food material and its laminar flow behavior was investigated using computational fluid dynamics (CFD). The movement of the slowest heating zone (SHZ) temperature was tracked and compared for the three geometries. The SHZ temperature was observed to attain the final sterilization fluid temperature of 100 °C fastest for an upright conical geometry followed by the cylinder and the downward pointing cone. There is scope for enhancing the thermal sterilization process through geometry modifications but without mechanical agitation or rotation. Further, the geometry modification if non-uniform must be complemented by its suitable orientation.  相似文献   

3.
Thermal sterilization of canned viscous liquid foods using saturated steam is enabled by natural convective heat transfer. However, the governing equations for two-dimensional convective heat transfer may be only rigorously solved by numerical calculations. On the other hand, if conduction is assumed to be the only mode of heat transfer, the thermal sterilization problem has analytical solutions for simple boundary conditions. However, the conduction model may not be appropriate in describing thermal sterilization of even viscous liquid foods and may cause considerable error in the prediction of the important parameters such as slowest heating zone (SHZ) temperature and lethality. The longer time for sterilization recommended by the conduction model may lead to overprocessing and an unacceptable food product. The objective of this work is to quantify the faster temperature rise in the food can due to natural convection when compared to the temperature rise obtained by only conductive heating. The consequent enhancement in lethalities is also reported. In addition, this work’s objective is to investigate how quickly the natural convective heat transfer effects begin to dominate over the solely conduction heating mode. The volume-averaged temperature as well as the SHZ temperature variations with time was calculated for the convection-augmented mode using computational fluid dynamics (CFD) simulations. Lethality values were then calculated based on volume-averaged temperature as well as the SHZ temperature. Food cans of different aspect ratios and food medium thermal conductivities are considered in this analysis. For the food system investigated, the critical Fourier number at which the transition to convection-augmented mode of heat transfer occurred is identified and explained from scaling considerations. In the conduction-dominated mode, it was possible to use analytical solutions to predict the volume-averaged and SHZ temperatures of the liquid food undergoing thermal sterilization. The Nusselt number correlation developed by Kannan and Gourisankar (2008) was used in the lumped parameter transient heat transfer model to predict the volume-averaged temperatures in the convection-dominated region. The volume-averaged temperatures from this approach were found to be in good agreement with the CFD simulation results. The time predicted for the SHZ to reach the minimum sterilization temperature was significantly lower when convective heating was also considered. The volume-averaged temperature and SHZ temperature enabled an estimation of overall sterility levels attained and minimum sterility levels prevalent inside the can, respectively. Even though the volume-averaged temperature increase due to convection was only about 10 K, the resulting accumulated lethality values were higher by an order of magnitude. The increase in SHZ temperatures was much higher in the convection-augmented mode, and consequently greater integrated lethalities were attained. The simple conduction model that is amenable to analytical solution cannot be used to approximate the heat-transfer-related phenomena even for “quick estimation” purposes when convection effects are significant. This precaution is found necessary even for the reasonably high viscous carboxy methyl cellulose system, whose average viscosity values ranged between 13 and 3 Pa s during the course of the sterilization process.  相似文献   

4.
刘北平 《食品科学》1993,14(8):12-16
提出利用致死率曲线,对罐头食品不等温杀菌加热时间进行计算机精确计算的新方法.适于手动控制的罐头食品杀菌过程,更适应于用计算机控制的罐头食品的杀菌。  相似文献   

5.
Thermal processing of canned fruits is an important preservation technique used to increase the shelf life of canned foods through the inactivation of spoilage microorganisms and enzymes. The objective of this study was to develop a computational fluid dynamics model to investigate the temperature profiles during the thermal processing of canned pineapple products. Two different kinds of products such as canned pineapple slices and titbits were analyzed to investigate the effect of size reduction of the product on the efficacy of heat transfer during thermal processing. The simulation results were validated with the experimental measurements of temperatures. The temperature profile, slowest heating zone (SHZ), and the effects of natural convection and conduction heating on canned pineapple slices and titbits were studied. In the canned pineapple slices, the SHZ was found to lie inside the pineapple slices. In contrast, for the pineapple titbits, the SHZ was present at the bottom of the can. The pineapple titbits were found to achieve a rapid temperature increase owing to the combined effects of buoyancy-induced natural convection and increased surface area available for higher heat transfer. This finding signifies the retention of the nutritive properties of pineapple by preventing the loss of heat-labile nutrients like vitamins without compromising the commercial sterility of the product.  相似文献   

6.
Cold plasma sterilization is an emerging non-thermal technology that is receiving great attention in the food processing area. Plasma is a neutral ionized gas composed of reactive gas species that inactivate bacteria or spores in a variety of food materials without compromising the main physico-chemical characteristics of the food. Survival curves of Bacillus subtilis spores were obtained after spore strip samples containing an initial spore population of 1.5–2.5 × 106 cfu/strip were subjected to plasma treatment. The shape of the survival curves was clearly not linear indicating that spores exhibited a spectrum of inactivation resistances to the plasma treatment. A Weibull model was used to describe these curves. In order to capture the effects of the typical variability in the concentration of the inactivating reactive gas species during plasma processing, time-varying concentrations were incorporated in the calculating approach. The result was an ordinary differential equation (ODE) that was numerically solved using MATLAB. This approach was successfully applied to describe the survival of B. subtilis spores during plasma processing as well as data obtained from the literature for B. atrophaeus. Ozone was assumed the lethal reactive gas species responsible for spore inactivation.Industrial relevanceModeling plasma processing is of great interest because it may provide an accurate estimation of time and conditions required for a complete plasma-based sterilization process.  相似文献   

7.
The objective of this work was to study the systematic inactivation of immobilized heat-resistant, validated wild-type bacteria (sporulated Bacillus subtilis D2 and vegetative Cronobacter sakazakii H30) in porous enlarged model food powder particles using the Vacuum-Steam-Vacuum (VSV) process. Developed bacterial sensors allowed a local contamination of model particles at a defined intraparticle position. Contradicting previous studies, a spore inactivation of 4 log 10 CFU in high depths of up to 10 mm (particle core) was possible by VSV treatment despite a noticeable intraparticle attenuation. To mimic inactivation in smaller food powder particles, similar-sized bacterial sensors were treated and showed slightly curve-linear kinetics explained by a short warm-up phase (lag time). Measured inactivation was lower than that predicted by traditional capillary (z = 8.0   C) treatment of suspensions due to non-linearity in the high temperature regime. This could be described by twice as high z values of 15.4 °C (no lag time) and 17.2 °C (lag time), respectively.Industrial relevance of present workThe emerging Vacuum-Steam-Vacuum (VSV) decontamination process aims at efficient heat transfer on solid surfaces and pores using saturated steam as the heat-transferring fluid. VSV was already used for treating vegetables, fruits, meats and spices. This work describes use of VSV for dry porous solids.  相似文献   

8.
研究了盐析菜罐头的生产工艺,对盐析菜加工中灭酶、护色及杀菌技术进行了深入探讨。试验结果表明,100℃、60s的烫漂条件,400ppm氯化锌加200ppm亚硫酸钠护色效果最佳;灌汁液排气后封罐,在105℃、15min条件下杀菌,产品质量较好。  相似文献   

9.
袁训宏  谢晶  王金锋 《食品与机械》2012,28(1):55-58,132
为了对橙汁灭菌及冷却工艺进行精确的研究,确保果汁品质的同时达到降低生产能耗、缩短生产时间的目的,在分析得到果汁中常见细菌灭杀温度及试验验证模型可靠性的基础上,对罐装橙汁高温灭菌及冷却工艺进行模拟计算。结果表明,在兼顾时间和能耗的原则下,最优灭菌工艺为95℃、1 020s,最优冷却工艺为10℃、720s。  相似文献   

10.
397克午餐肉传热曲线斜率f_h为66,j值为1.32。采用鲍尔公式计算的结果,若加热温度为112℃,118℃,121℃,125℃,130℃时,要使罐内中心点F值达到3,在离罐壁15mm处的F值分别为12.99,36.38,52.46,130.01,334.3,通过实罐试验,采用130℃高温短时杀菌的罐头因受热过度,有脂肪析出,弹性也差。本试验说明,午餐肉罐头采用116—118℃的杀菌条件为宜。  相似文献   

11.
新型冠状病毒在全球范围内大流行,冷链生鲜食品及外包装作为新型冠状病毒潜在远程传播载体,增加了病毒通过“物传人”的感染风险。非热杀菌技术是一类新型杀菌技术,无需热能消耗即可杀灭食品中有害或致病微生物,避免了传统热杀菌技术传热相对较慢和对杀菌对象产生热损伤等缺点,将该技术应用于生鲜食品中不仅能有效阻断病毒传播,还能在食品保鲜和延长货架期方面发挥积极作用。本文主要介绍了适用于冷链环节中生鲜食品表面及外包装的非热杀菌技术,包括化学消毒剂、紫外线辐射、臭氧消毒、低温等离子体等,并从不同非热杀菌技术的工作机制、对病原体的灭活作用、对冷链过程中生鲜食品的保鲜效果进行阐述,以期为非热杀菌技术在冷链生鲜食品中的杀菌消毒应用提供理论指导,为保障冷链生鲜食品安全提供一定参考。  相似文献   

12.
本论文以平板型罐头食品为研究对象,探讨热杀菌过程中心部分杀菌值的简单计算方法。通常推算杀菌值就需要对温度的数值进行积分,或利用计算机软件来进行计算分析,比较困难和复杂。本研究首先利用数学解析计算出中心温度,再利用积分方法计算出杀菌值后,建立中心温度和杀菌值的函数关系式。通过函数关系式来推算杀菌值,比较简单易行。表达式以杀菌温度和Z值作为参数,推导出不同杀菌温度和Z值时杀菌值的表达式关系,不通过积分就可以通过简单的函数式来表达。将通过函数表达式求得的杀菌值和通过积分求得的杀菌值进行比较的结果表明误差在1 min以内,实现了杀菌值的简便计算。此方法便简单易行。有利于杀菌工艺的优化,对罐头食品的品质管理具有重要意义。  相似文献   

13.
高密度CO2杀菌机制与协同措施研究现状   总被引:1,自引:0,他引:1  
高密度CO2 杀菌技术对营养细菌的杀菌是切实可行的,但是在较温和条件下,很难杀灭芽胞;已报道杀菌研究结果绝大部分是将微生物接种在指定的基质开展,基质影响杀菌效果,故研究成果难以实际应用;营养细菌的杀菌机制还没有完全研究清楚,芽胞的杀灭机制几乎没有研究。为此亟待进一步展开营养细菌和芽胞杀菌机制研究,为高密度CO2 杀菌技术的实用化提供理论基础。本文回顾了国内外研究状况,提出了进一步工业化前需要解决的酸化杀菌、萃取杀菌、芽胞杀灭机理以及协同措施等应用基础问题。  相似文献   

14.
A mathematical model was developed to evaluate thermal processing of foods in cylindrical plastic cans. This model included convective heat transfer coefficients for heating and cooling media, thermal diffusivities of plastic can wall and the canned food, and contact conductance between the plastic wall and the canned food. Temperatures estimated by the model at the coldest point in a can agreed closely with those determined experimentally during thermal processing. Thermal diffusivity of can wall and heat transfer coefficients of heating and cooling media considerably influenced the sterilizing values of the processed food.  相似文献   

15.
Compression heating characteristics of different pressure transmitting fluids [three different concentrations (75:25, 50:50, 25:75) of water–glycol mix and sodium benzoate (2%) solutions] and their influence on inactivation of spores of Bacillus subtilis in phosphate buffer (0.067 M, pH 7.0) during high pressure processing (HPP) were studied. Experiments were conducted using a pilot scale food processor. Pressure transmitting fluids containing highest percentage of glycol (25:75 water–glycol mix) showed highest temperature increase while 2% sodium benzoate solution showed least temperature increase during high pressure processing. The target pressure, holding time, compressibility, initial temperature, and the rate of heat loss to the surroundings primarily influenced the apparent temperature increase of pressure transmitting fluid in a vessel during HPP. The temperature change was further influenced by the fluid properties such as viscosity, specific heat and thermal conductivity. Use of sodium benzoate solution as pressure-transmitting fluid resulted in highest inactivation of B. subtilis spores. Change in pressure transmitting fluid temperature as a result of compression heating and subsequent heat transfer should be considered in inactivation of bacterial spores by HPP.  相似文献   

16.
纳米流体是一种能替代热交换器中传统介质的新兴流体,其具有稳定性好、可重复利用、节约能耗等优点,以纳米流体为传热介质的热交换器有传热效率高、杀菌时间短的特点,更好地保持了食品感官和营养特性.该流体已成功应用于牛奶、果汁等液态食品的杀菌.本文概述了不同类型的纳米流体,如多壁碳纳米管(Multi-wall carbon na...  相似文献   

17.
In this study, a DNA mini-barcoding methodology was developed for the differentiation of species commonly found in canned tuna. Primers were designed to target a 236-base pair (bp) fragment of the mitochondrial control region (CR) and a 179-bp fragment of the first internal transcribed spacer region (ITS1). Phylogenetic analysis revealed the ability to differentiate 13 tuna species on the basis of the CR mini-barcode, except in a few cases of species introgression. Supplementary use of ITS1 allowed for differentiation of introgressed Atlantic bluefin tuna (Thunnus thynnus) and albacore tuna (Thunnus alalunga), while differentiation of introgressed Atlantic bluefin tuna and Pacific bluefin tuna (Thunnus orientalis) requires a longer stretch of the CR. After primer design, a market sample of 53 commercially canned tuna products was collected for testing. This mini-barcoding system was able to successfully identify species in 23 of the products, including albacore tuna, yellowfin tuna (Thunnus albacares), and skipjack tuna (Katsuwonus pelamis). One instance of mislabeling was detected, in which striped bonito (Sarda orientalis) was identified in a product labeled as tongol tuna (Thunnus tonggol). PCR amplification and sequencing was unsuccessful in a number of products, likely due to factors such as the presence of PCR inhibitors and DNA fragmentation during the canning process. Overall, CR and ITS1 show high potential for use in identification of canned tuna products; however, further optimization of the assay may be necessary in order to improve amplification and sequencing success rates.  相似文献   

18.
本研究利用电子鼻和顶空固相微萃取结合气质联用技术,探究四喜丸子软罐头加工关键工艺点的挥发性风味特征及变化规律,以确定其高温蒸煮异味(Warmed-over flavor, WOF)的形成机制。结果表明,高压蒸汽灭菌后的样品与其他组的风味轮廓存在显著性差异(P<0.05);蒸制后的四喜丸子风味较好,而高压蒸汽灭菌后的样品产生显著的WOF异味(以亚麻籽油味和罐头味为主)(P<0.05)。此外,气味活度值分析结果表明,WOF关键异味分子为正己醛和庚醛;热加工过程中,这两种物质含量显著上升(P<0.05),POV值显著下降(P<0.05),TBARS值显著升高(P<0.05),热处理促进四喜丸子中脂质的氧化降解。因此,本研究为四喜丸子软罐头工业化产品的异味形成和品质提升提供理论依据和技术支持。  相似文献   

19.
The inactivation of pectin methylesterase (PME) in pineapple puree was studied within the domain of 0.1–600 MPa/30–70 °C/1 s–40 min. The combined effect of pressure-build up and decompression, as characterized by pulse inactivation (PI value), was modeled by the artificial neural network (ANN) through a tan-sigmoidal function of target pressure, target temperature, compression, and decompression time. Besides, nth order kinetic model was fitted during the isobaric-isothermal hold period. The extent of pulse inactivation of PME ranged from 15% (200 MPa/30 °C) to 67% (600 MPa/70 °C) and it increased at a higher temperature and/or pressure. The inactivation orders (n) during thermal (0.1 MPa/30–70 °C) and high pressure (100–600 MPa/30–70 °C) treatments were 1.15 and 1.3, respectively. The rate constant (k) ranged within 4.0 to 71.2 × 10−3 Un−1·min−1. A nonlinear model considering the pressure dependency of activation energy, and temperature dependency of activation volume was developed which adequately described the inactivation behavior of PME within the domain.Industrial relevancePectin methylesterase (PME) in the pineapple puree results in a product with a modified texture and consistency that is usually not entertained by the consumer. Therefore, pineapple puree has to be processed to inactivate PME to avoid the cloud loss. Now-a-days, high-pressure processing is being used for fruit products to retain the heat sensitive nutrients. In this sense, a model capable of predicting the exact inactivation behavior of PME during the treatment is very much obligatory for process design. This combined model developed in the study will help the food industry to come-up with the exact pressure-temperature-holding time combination achieving a certain degree of PME inactivation.  相似文献   

20.
Cold plasma is a promising technique that has been tested as a process technology for a range of food commodities, mainly to destroy microorganisms, but also aimed at toxin degradation, enzyme inactivation, residual pesticide degradation and functionalization of food properties. Plasma has already been employed by industry for food packaging material sterilization and surface modification. As most of the current literature on cold plasma in the field of food science is focused on microbial inactivation efficacy, the information about its chemical influences on food is sparse. To better understand the chemical interactions of with plasma, this review focuses on plasma chemistry diagnostics techniques available to characterize the plasma reactive species generated. Equally important is the detection of induced chemistry in the food and here we present approaches to analyze likely reactions with key food bio-molecules. Such analysis will support mechanistic insights involved in these complex chemical reactions (i.e., DNA, lipid and protein) along with potential physical modifications of the food structure. For successful adoption of plasma as a food processing aid it is critical to elucidate these interactions as they have an important role in demonstrating the technology’s safety as a food processing technique along with understanding any effect on food nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号