首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Over the past decades, Chinese ports throughput grew rapidly, and more and more concerns were shown on the operational efficiency and effectiveness. Many studies have been made for scheduling berth and quay cranes, which are the critical resources in container terminals. In this paper, a two-phase model for berth allocation and quay crane assignment is proposed. In the first phase, according to the relationships of time and space between vessels, a new continuous berth allocation model is established, in which not only the common restricts but the coverage area of quay crane are considered. Then in the quay crane assignment phase, a multi-objective programming model is proposed, in which the first objective is to minimize the range of maximum and minimum quay cranes used for resources saving, and the second one is to minimize the movements of quay cranes so as to improve the efficiency. A particle swarm optimization algorithm for BAP was developed. The results of numerical experiments show that the proposed approach can improve the essential operations in container terminal.  相似文献   

2.
This paper addresses an effective approach to solve the issue of berth allocation and quay crane assignment in a multi-user container terminal. First of all, the studied coupling problem is formulated with the interactions between berth allocation and quay crane assignment considered. Then, an evolutionary algorithm with nested loops was developed to obtain optimal solutions. The algorithm is well structured, where two inner loops are used to solve sub-problems of berth allocation and quay crane assignment respectively; an outer loop is then utilized to find an approximate solution based on the results of the two inner loops. The results of numerical experiments show that the proposed approach can improve the essential operations in container terminals.  相似文献   

3.
Port operations usually suffer from uncertainties, such as vessels’ arrival time and handling time and unscheduled vessels. To address this, this study presents a dynamic berth allocation and crane assignment specific problem (BACASP) when unscheduled vessels arrive at the port, which is branded the berth allocation and quay crane assignment specific problem with unscheduled vessels (UBACASP). A rolling-horizon based method is proposed to decompose the UBACASP into a multi-stage static decision BACASP, wherein a rescheduling margin-based hybrid rolling-horizon optimization method is developed by incorporating the event-driven and periodical rolling-horizon strategies as the urgency of dynamic events is evaluated. In each rolling horizon, a mixed integer linear programming model (MILP) is presented for the BACASP to minimize the total port stay time of vessels and the penalties of delays associated with the spatial and temporal constraints, such as the length of continuous berth, number of quay cranes (QCs) and non-crossing of QCs. A discretization strategy is designed to divide the continuous berth into discrete segments, and convert the BACASP to a discrete combinatorial optimization problem, which is efficiently solved by the proposed adaptive large neighborhood search algorithm (ALNS). Case studies with different problem characteristics are conducted to prove the effectiveness of the solution methods proposed in this study. Moreover, the performances of the ALNS and the existing methods for solving the BACASP are compared, and the advantages and disadvantages of different rolling strategies under different degrees of uncertainties are deeply analyzed.  相似文献   

4.
为了制定合理高效的泊位岸桥联合分配方案,加快船舶周转,本文针对船舶动态到港的连续泊位建立了以船舶总在港时间最短为目标的泊位岸桥联合分配混合整数非线性模型.通过多目标约束处理策略将复杂约束的违反程度转化为另一个目标,从而将原单目标优化模型转化为双目标优化模型,并用基于快速非支配排序的多目标遗传算法(NSGA-II)对其进行求解.同时,针对问题特点,分别设计了基于调整、惩罚函数、可行解优先和综合约束处理策略的单目标遗传算法对原模型进行求解.通过多组不同规模的标准算例对本文的方法进行测试,验证了基于多目标约束处理策略的方法求解效果相较于单目标约束处理策略的方法更加高效和稳定.  相似文献   

5.
This study investigates a berth allocation problem considering the periodic balancing utilization of quay cranes in container terminals. The proposed model considers that the quay cranes allocated to a work shift should be fully used and other real-world considerations, such as the continuous quay line, the penalties for early arrivals and departure delays. To solve the model, several heuristics are developed: the model for large problems is decomposed into sub-models that are solved by rolling-horizon heuristics; neighborhood search heuristics are used for optimizing a berthing order of vessels; parallel computing is used to improve the algorithmic performance. The method performs well when applied to real-world large-scale instances with promising computation time that is linearly related to the number of vessels.  相似文献   

6.
This paper presents a new approach to analyze the integrated quay crane assignment and scheduling problem (QCASP). The problem determines the assignment of quay cranes to vessels and the sequence of tasks to be processed by each quay crane simultaneously, and accounts for important considerations such as safety margins between quay cranes (QCs), ordering conditions and vessel priority. Furthermore, QCs can travel from one vessel to another vessel whenever tasks are complete. The integrated problem is difficult to solve with exact methods due to its complexity. Therefore, a genetic algorithm (GA) is proposed to solve the integrated QCASP. Computational results validate the performance of the proposed GA.  相似文献   

7.
桥吊可动态分配的连续泊位分配问题算法   总被引:1,自引:0,他引:1  
陈雪莲  杨智应 《计算机应用》2012,32(5):1453-1456
研究在允许桥吊动态分配的情况下集装箱码头的连续泊位动态分配问题,并建立以船舶在港时间最小为目标的动态泊位分配模型;然后基于兄弟-儿子方法对船舶的位置进行调整以规划桥吊使桥吊不交叉。在相同算例下,比现有方法得到的船舶在港时间更少,从而验证了模型及算法的有效性。  相似文献   

8.
在集装箱码头系统中,对船舶进行有效的岸桥配置有助于缓解岸边资源紧张的现状,提高码头的运营效率。针对连续泊位下动态到港船舶的泊位分配和岸桥配置的集成优化问题,对船舶的岸桥配置进行基于船时效率的动态调整,以最小化包括船舶延迟靠泊成本、偏离偏好泊位成本、延迟离港成本和岸桥重新配置成本在内的总成本为目标建立模型,并根据基于船时效率的岸桥配置的调整规则设计了启发式算法,结合遗传算法(GA)对问题进行求解。最终通过算例分析,验证了提出的模型和算法在解决实际港口中泊位分配和岸桥配置问题上的有效性,并通过与未考虑岸桥配置进一步调整的传统GA计算的结果进行比较,证实了提出算法的优化效果。  相似文献   

9.
泊位分配(BA),岸桥配置(QCA)及岸桥调度(QCS)是三个基本的岸边决策问题。提出了一个基于混合整数线性规划的BA和QCA的集成模型,模型综合考虑了货轮优先权,理想泊位及处理时间三个方面的因素。在实际生产数据上的运行结果表明该模型具有决策支持的潜在能力。  相似文献   

10.
The quay crane scheduling problem is a core task of managing maritime container terminals. In this planning problem, discharge and load operations of containers of a ship are scheduled on a set of deployed quay cranes. In this paper, we provide a rich model for quay crane scheduling that covers important issues of practical relevance like crane-individual service rates, ready times and due dates for cranes, safety requirements, and precedence relations among container groups. Focus is put on the incorporation of so-called unidirectional schedules into the model, by which cranes move along the same direction, either from bow to stern or from stern to bow, when serving the vessel. For solving the problem, we employ a branch-and-bound scheme that is known to be the best available solution method for a class of less rich quay crane scheduling problems. This scheme is extended by revising and extending the contained lower bounds and branching criteria. Moreover, a novel Timed Petri Net approach is developed and incorporated into the scheme for determining the starting times of the discharge and load operations in a schedule. Numerical experiments are carried out on both, sets of benchmark instances taken from the literature and real instances from the port of Gioia Tauro, Italy. The experiments confirm that the new method provides high quality solutions within short runtimes. It delivers new best solutions for some of the benchmark problems from the literature. It also shows capable of coping with rich real world problem instances where it outperforms the planning approach applied by practitioners.  相似文献   

11.
肖玲  胡志华 《计算机应用》2013,33(10):2969-2973
针对连续泊位与桥吊集成调度大规模求解困难的问题,提出一种基于滚动策略的优化方法。首先,建立了最小化船舶偏离偏好泊位的成本以及延迟靠泊、延迟离港的惩罚成本的基本的多目标优化模型;然后,采用滚动调度方法根据动态抵泊的船舶抵达顺序将调度过程分成连续的调度窗口,并设计窗口的平移策略、当前窗口对下一窗口的参数更新方式;对每个窗口内船舶进行调度优化,根据每个窗口内的优化结果,更新下一个窗口中数学模型的输入参数;通过选取以船舶数量表示的滚动计划窗口和冻结船舶的数量,持续滚动获得每个窗口的最优解,叠加后获得对所有船舶的靠泊计划。通过算例分析表明,滚动调度能够解决较大规模的调度问题,其效率受滚动窗口大小、冻结船舶数量及滚动次数影响  相似文献   

12.
针对集装箱码头泊位岸桥调度这一NP难题,提出了一种改进的Memetic算法。算法中采用三层染色体结构表示个体,通过改进顺序交叉算子和基于领域搜索的变异算子以避免个体超出可行域,在交叉和变异后采用改进的模拟退火策略进行局部搜索。试验算例表明该算法收敛速度较快,且能获得较好的满意解。  相似文献   

13.
在考虑任务属性中的任务优先顺序和不可同时执行要求,岸桥属性中的岸桥时间窗、转移时间、初始位置、安全距离和装卸速度等因素下,以单艘船舶的最短岸桥作业时间为目标函数,建立单艘船舶岸桥调度的混合整数线性模型P1。计算数据采集于宁波某集装箱港口,通过简化模型P2求解岸桥调度模型P1的下限边界值和排程数据,在此基础上,运用基于规则的启发式算法求解模型P1的岸桥调度时序表。计算结果表示本组合算法能较好地得到满意解,而且比较符合港口实际。  相似文献   

14.
针对集装箱码头泊位确定条件下的单船岸桥(QC)分配和调度问题,建立了线性规划模型.模型以船舶在泊作业时间最短为目标,考虑多岸桥作业过程中的干扰等待时间与岸桥间的作业量均衡,并设计了嵌入解空间切割策略的改进蚁群优化(IACO)算法进行模型求解.实验结果表明:与可用岸桥全部投放使用的方法相比,所提模型与算法求得结果平均能够节省31.86%的岸桥资源;IACO算法与Lingo求得的结果相比,船舶在泊作业时间的平均偏差仅为5.23%,但CPU处理时间平均降低了78.7%,表明了所提模型与算法的可行性和有效性.  相似文献   

15.
Green transportation has recently been the focus of the transportation industry to sustain the development of global economy. Container terminals are key nodes in the global transportation network and energy-saving is a main goal for them. Yard crane (YC), as one type of handling equipment, plays an important role in the service efficiency and energy-saving of container terminals. However, traditional methods of YC scheduling solely aim to improve the efficiency of container terminals and do not refer to energy-saving. Therefore, it is imperative to seek an appropriate approach for YC scheduling that considers the trade-off between efficiency and energy consumption. In this paper, the YC scheduling problem is firstly converted into a vehicle routing problem with soft time windows (VRPSTW). This problem is formulated as a mixed integer programming (MIP) model, whose two objectives minimize the total completion delay of all task groups and the total energy consumption of all YCs. Subsequently, an integrated simulation optimization method is developed for solving the problem, where the simulation is designed for evaluating solutions and the optimization algorithm is designed for exploring the solution space. The optimization algorithm integrates the genetic algorithm (GA) and the particle swarm optimization (PSO) algorithm, where the GA is used for global search and the PSO is used for local search. Finally, computational experiments are conducted to validate the performance of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号