首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Image dehazing methods aim to solve the problem of poor visibility in images due to haze. Techniques proposed for image dehazing in literature focus on image priors, haze lines or data driven statistical models. Variations of the classical methods relying on prior model or haze line model use no-reference image quality metrics to prove their dehazing performance. Recently developed deep learning models rely on huge amounts of hazy, haze-free pairs for training, and uses PSNR and SSIM like image reconstruction metrics to show their performance. These methods perform poorly on no-reference image quality assessments and also dehazes poorly at the depths of the image. These methods though can be optimized for memory usage and are faster. This work presents a deep learning model (Feature Fusion Attention Network) trained on a domain randomized synthetic dataset generated in simulation. The proposed model achieves the highest scores on blind image assessments through the gradient rationing technique for a deep learning-based approach by a significant margin. The images were evaluated on full-reference metrics as well and obtained favorable results. This approach also yields one of the highest edge sharpness obtained after dehazing. The training procedure adopted to obtain significant gains on real-world dehazing, without using any real-world data is also detailed in this paper.  相似文献   

2.
In this work, a single image dehazing method that improves the haze removal capacity of the Joint Contrast Enhancement and Exposure Fusion (CEEF) method with Smoothing-Sharpening Image Filter (SSIF) is presented. In this method, the hazy image is first sharpened with SSIF to obtain a sharper image. In this way, the difference between haze and objects is amplified. Then, the AHE procedure in CEEF is replaced by CLAHE to obtain an enhanced CEEF. The enhanced CEEF is applied to the filtering result to obtain the final dehazed image. Observations demonstrate that the proposed method obtains enhanced results while reducing the amount of haze. The visual and quantitative comparisons between the proposed method and state-of-the-art dehazing methods show that the proposed method has better dehazing performance and has a 50% improvement in terms of the FADE metric compared to the closest result.  相似文献   

3.
《电子学报:英文版》2016,(6):1114-1120
Images captured in foggy or hazy weather conditions often suffer from poor visibility.The dark channel prior method has well solved the single image dehazing problem in nature,but it is invalid when the scene objects are inherently similar to the atmospheric light and no shadow is cast on them.We propose an efficient regularization method by adding a scene radiance constraint and combing the dark channel prior to remove hazes from a sin-gle input image.The experiments show that this improved algorithm can deal with various levels of foggy weather conditions,as well as greatly enhance the image's visibility and details.In addition,the recovered haze-free image has little or no halo artifacts.  相似文献   

4.
肖进胜  周景龙  雷俊锋  刘恩雨  舒成 《电子学报》2019,47(10):2142-2148
针对传统去雾算法出现色彩失真、去雾不完全、出现光晕等现象,本文提出了一种基于霾层学习的卷积神经网络的单幅图像去雾算法.首先,依据大气散射物理模型进行理论推导,本文设计了一种能够直接学习和估计有雾图像和霾层图像之间的映射关系的网络模型.采用有雾图像作为输入,并输出有雾图像与无雾图像之间的残差图像,随后直接从有雾图像中去除此霾层图像,即可恢复出无雾图像.残差学习的引入,使得网络来直接估计初始霾层,利用相对大的学习率,减少计算量,加快收敛过程.再利用引导滤波进行细化,使得恢复出的无雾图像更接近真实场景.本文对不同雾浓度的有雾图片的去雾效果进行测试,并与当前主流深度学习去雾算法及其他经典算法进行对比.实验结果显示,本文设计的卷积神经网络模型在图像去雾的应用,不论在主观效果还是客观指标上,都有优势.  相似文献   

5.
为提高单幅图像去雾方法的准确性及其去雾结果的细节可见性,该文提出一种基于多尺度特征结合细节恢复的单幅图像去雾方法。首先,根据雾在图像中的分布特性及成像原理,设计多尺度特征提取模块及多尺度特征融合模块,从而有效提取有雾图像中与雾相关的多尺度特征并进行非线性加权融合。其次,构造基于所设计多尺度特征提取模块和多尺度特征融合模块的端到端去雾网络,并利用该网络获得初步去雾结果。再次,构造基于图像分块的细节恢复网络以提取细节信息。最后,将细节恢复网络提取出的细节信息与去雾网络得到的初步去雾结果融合得到最终清晰的去雾图像,实现对去雾后图像视觉效果的增强。实验结果表明,与已有代表性的图像去雾方法相比,所提方法能够对合成图像及真实图像中的雾进行有效去除,且去雾结果细节信息保留完整。  相似文献   

6.
Haze is an atmospheric phenomenon which diminishes visibility in outdoor images. Algorithms based on dark channel prior (DCP) and haze line prior are found to be effective for dehazing images. These two methods make use of the Laplacian matrix, which is computationally complex, memory intensive and slow, thus making it impossible to use them on high-resolution (large) images. Multiple strategies have been suggested in the literature to speed up dehazing process by avoiding the Laplacian matrix, but these methods compromise on the quality of dehazing. We propose an effective modular method which divides the input image into blocks and processes each block independently. This makes it possible to use our method for dehazing large images retaining Laplacian matting and thus ensuring the output image quality. This division results in the possibility of assuming local values of atmospheric light. We show that this approach results in better dehazing in the local regions. The effectiveness of the proposed modular architecture is tested also on a learning based method. The output of the modular method is compared with those of different state-of-the-art dehazing methods for multiple quality parameters. Toward this, we have created a dataset of hazy natural outdoor images of large size.  相似文献   

7.
基于暗原色和加权形态学滤波的图像去雾算法   总被引:2,自引:1,他引:1  
针对雾天图像能见度低、对比度差的特点,提出一种自动消除雾的方法:基于暗原色和加权形态滤波的增强算法。首先引入暗原色先验信息,然后利用形态学滤波方法估计雾浓度图。该方法既能平滑雾浓度图,又能很好地保留场景的边缘,使估计出的雾浓度图更加精确。最后恢复去雾图像。实验结果表明,该方法简单快速有效,能够很好地达到去雾目的,并且较好地保留图像边缘细节。  相似文献   

8.
Single image dehazing is a critical image pre-processing step for many practical vision systems. Most existing dehazing methods solve this problem utilizing various of hand-crafted priors or by supervised training on the synthetic hazy image information (such as haze-free image, transmission map and atmospheric light). However, the assumptions on the hand-crafted priors are easily violated and collecting realistic transmission map and atmospheric light are unpractical. In this paper, we propose a novel weakly supervised network based on the multi-level multi-scale block. The proposed network reduces the constraint on the training data and automatically estimates the transmission map and the atmospheric light as well as the intermediate haze-free image without using any realistic transmission map and atmospheric light as supervision. Moreover, the estimated intermediate haze-free image helps to generate accurate transmission map and atmospheric light by embedding the physical-model, which presents reliable restoration of the final haze-free image. In particular, our network also can be trained on the real-world dataset to fine-tune the model and the fine-tuning operation improves the dehazing performance on the real-world dataset. Quantitative and qualitative experimental results demonstrate the proposed method performs on par with the supervised methods.  相似文献   

9.
A dehazing method often only shows good results when processing the image for a certain haze concentration. So an adaptive hazy image dehazing method based on SVM is proposed. The innovation points are as follows: Firstly, combining the characteristics of the degraded images of haze weather, the dark channel histogram and texture features of the input images are extracted to form the feature vectors. These are trained by supervised learning through SVM algorithm to realize automatic binary classification of images; Secondly, the defined dehazing methods are called to process the classified result as a hazy image and the same quality evaluation indexes are used to evaluate each image output by different dehazing methods. Then, it outputs the highest evaluation image after haze removal. Finally, the output image is classified again by SVM until the image reaches the clearest it can be. The experimental results show that the proposed algorithm exhibits good contrast, brightness and color saturation from the visual effect. Also the scene adaptability and robustness of the algorithm are improved.  相似文献   

10.
图像去雾过程中的噪声抑制方法   总被引:1,自引:0,他引:1       下载免费PDF全文
大气中微小颗粒(如雾、霾等)的散射作用会使户外场景拍摄的图像发生退化,造成图像质量下降。图像去雾可以提升图像对比度,增加场景能见度,校正颜色失真,改善视觉效果。但是图像去雾经常会出现明显的噪声放大现象,尤其是无穷远处的天空区域最为严重。针对这一问题,提出了一种去雾过程中的噪声抑制方法。以传输率图像为指导,采用滤波半径变化的双边滤波对雾天图像进行模糊。再计算新的传输率图像,代入雾天成像模型,得到去噪后复原图像。结合噪声评价方法,实验结果验证了该方法的噪声抑制效果。  相似文献   

11.
Haze is a poor-quality state described by the opalescent appearance of the atmosphere which reduces the visibility. It is caused by high concentrations of atmospheric air pollutants, such as dust, smoke and other particles that scatter and absorb sunlight. The poor visibility can result in the failure of multiple computer vision applications such as smart transport systems, image processing, object detection, surveillance etc. One of the major issues in the field of image processing is the restoration of images that are corrupted due to different degradations. Typically, the images or videos captured in the outside environment have low contrast, colour fade and restricted visibility due to suspended particles of the atmosphere that directly influence the image quality. This can cause difficulty in identifying the objects in the captured hazy images or frames. To address this problem, several image dehazing techniques have been developed in the literature, each of which has its own advantages and limitations, but effective image restoration remains a challenging task. In recent times, various learning (Machine learning & Deep learning) based methods greatly condensed the drawbacks of manual design of haze related features and reduces the difficulty in efficient restoration of images with less computational time and cost. The current state-of-the-art methods for haze free images, mainly from the last decade, are thoroughly examined in this survey. Moreover, this paper systematically summarizes the hardware implementations of various haze removal methods in real time. It is with the hope that this current survey acts as a reference for researchers in this scientific area and to provide a direction for future improvements based on current achievements.  相似文献   

12.
暗原色先验图像去雾算法研究   总被引:3,自引:3,他引:3  
为了减小有雾天气对户外成像系统尤其是航拍视觉系统成像的影响,提出了一种新颖快速的基于暗原色先验和雾天图像退化模型的图像去雾方法.结合航拍图像特点,对原暗原色先验去雾箅法做了优化和改进.选取一系列户外带雾图像进行大量实验,结果表明,该方法能从物理特性上快速明显的去除雾的干扰,提高图像的清晰度,增强图像色彩和细节,复原得到...  相似文献   

13.
Images with hazy scene suffer from low-contrast, which reduces the visible quality of the scene, thus making object detection a more challenging task. Low-contrast can result from foggy weather conditions during image acquisition. Dehazing is a process of removal of haze from the photography of a hazy scene. Single-image dehazing based on dark channel priors are well-known techniques in this field. However, the performance of such techniques is limited to priors or constraints. Moreover, this type of method fails when images have sky-region. So, a method is proposed, which can restore the visibility of hazy images. First, a hazy image is divided into blocks of size 32 × 32, then the score of each block is calculated to select a block having the highest score. Atmospheric light is calculated from the selected block. A new color channel is considered to remove atmospheric scattering, obtained channel value and atmospheric light are then used to calculate the transmission map in the second step. Third, radiance is computed using a transmission map and atmospheric light. The illumination scaling factor is adopted to enhance the quality of a dehazed image in the final step. Experiments are performed on six datasets namely, I-HAZE, O-HAZE, BSDS500, FRIDA, RESIDE dataset and natural images from Google. The proposed method is compared against 11 state-of-the-art methods. The performance is analyzed using fourteen quantitative evaluation metrics. All the results demonstrate that the proposed method outperforms 11 state-of-the-art methods in most of the cases.  相似文献   

14.
In this paper, we present a new approach for single image dehazing based on the proposed variational optimization. A hazy image captures the information about haze in terms of the transmission map and object details present in it. We propose to estimate the initial transmission map by performing the structure-aware smoothing of the hazy image. Further, we formulated a variational optimization for the estimation of final transmission, which refines the initial transmission of a hazy image. Atmospheric light can be considered to be constant throughout the scene for practical purposes. The uniform atmospheric light is computed from the dark channel of a hazy image. The exhaustive experimentation shows that the performance of the proposed method is comparable or better.  相似文献   

15.
传统的暗原色先验图像降雾算法在处理不满足暗原色先验假设的明亮区域时,估计的透射率不准确。从而导致降雾后的图像色彩出现较大偏差。针对这一不足,本文提出了一种基于半反图像的透射率优化降雾算法。该算法通过明亮区域检测来获取大气光,然后用自定义函数对图像中明亮区域透射率进行修正,最后利用引导滤波器优化初始透射率,恢复出清晰的降雾图像。实验结果表明,该算法可以有效地处理图像中不满足暗原色先验假设的明亮区域,提高了户外视觉系统的鲁棒性。  相似文献   

16.
针对颜色衰减先验图像去雾算法存在对较浓的有雾图像去雾效果不佳的问题,提出基于动态大气散射系数的颜色衰减先验图像去雾算法.用动态大气散射系数取代颜色衰减先验去雾算法中恒定大气散射系数的假设,定义大气散射系数为关于图像景深的指数函数.利用Middlebury stereo datasets中无雾图像和相应的景深图像得到合成有雾图像.采用均方误差(MSE)和结构相似度(SSIM)的综合评价参数MSE-SSIM确定上述指数函数的两个参数的最佳取值.实验结果表明与颜色衰减先验算法、He、Meng算法相比,该算法的去雾图像清晰颜色自然,有效地提高了去雾效果.  相似文献   

17.
Optimized contrast enhancement for real-time image and video dehazing   总被引:1,自引:0,他引:1  
A fast and optimized dehazing algorithm for hazy images and videos is proposed in this work. Based on the observation that a hazy image exhibits low contrast in general, we restore the hazy image by enhancing its contrast. However, the overcompensation of the degraded contrast may truncate pixel values and cause information loss. Therefore, we formulate a cost function that consists of the contrast term and the information loss term. By minimizing the cost function, the proposed algorithm enhances the contrast and preserves the information optimally. Moreover, we extend the static image dehazing algorithm to real-time video dehazing. We reduce flickering artifacts in a dehazed video sequence by making transmission values temporally coherent. Experimental results show that the proposed algorithm effectively removes haze and is sufficiently fast for real-time dehazing applications.  相似文献   

18.
林雷  杨燕  张帅 《光电子.激光》2024,35(4):360-369
针对现有去雾算法未充分考虑图像雾气信息、复原图像细节模糊等问题,提出一种新颖的反映图像雾信息分布的雾气特征图,并采用不等关系约束方法提高图像质量。首先,提取退化图像的极值通道以实现雾气信息的粗略估计,并通过L-1正则化对其进行优化从而得到雾气特征图。其次,提出一种基于雾气特征的初级大气光幕函数,通过对颜色通道和大气光幕作深入分析,利用均值不等式获得约束后的退化场景大气光幕。最后,利用雾气特征图对局部大气光进行改进,并基于大气散射模型实现图像去雾。将所提算法在真实雾图和合成数据集雾图上与其他经典方法进行比较分析,可以发现,所提算法在单幅图像去雾中展现了较好的性能,且在夜间雾图复原中更具优势。  相似文献   

19.
图像雾霾等级评价及去雾技术研究进展   总被引:1,自引:0,他引:1  
图像去雾技术是对有雾图像进行清晰化处理的一门技术,该技术的任务是去除环境因素对图像质量的影响,从而增强图像的视见度。文章首先对雾霾图像的性质与分类研究进行了论述,并进一步综述了图像去雾技术的国内外研究现状,对直方图均衡化算法,Retinex算法和先验暗通道算法等典型的去雾方法的效果进行评价。总结了各类算法的性能,分析他们各自的优势和不足。最后指出了图像去雾技术的发展趋势和未来展望。  相似文献   

20.
A fast and efficient video dehazing system with low computational complexity has a huge demand among drivers during hazy winter nights. There are only a few video dehazing models that exist in literature. Video dehazing requires the sequential extraction and processing of frames. The processed frames must be restored in the same sequence as the original video. However, the existing video dehazing algorithms suffer from color distortion due to the continuous processing of frames. They are not suitable for videos with dense haze. Furthermore, some dehazing systems require hardware, whereas the proposed model is completely software-based to reduce the computational costs. In this paper, an image and video dehazing system called Aethra-Net is developed. A gush enhancer-based autoencoder is modified to obtain the transmission map. The structure of gush enhancement module resembles the processing of light entering the human eye from different paths. The multiple blocks of Resnet-101 layers are employed to overcome vanishing gradient problem. The vessel enhancement filter is also incorporated to enhance the performance of the proposed system. The proposed model has a susceptibility to compute the dehazed images effectively. The proposed model is evaluated on various benchmark datasets and compared with the existing dehazing techniques. Experimental results reveal that the performance of Aethra-Net is found superior as compared to the existing dehazing models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号