首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonthermal plasma (NTP) is an advanced technology that has gained extensive attention because of its capacity for decontaminating food from both biological and chemical sources. Plasma-activated water (PAW), a product of NTP's reaction with water containing a rich diversity of highly reactive oxygen species (ROS) and reactive nitrogen species (RNS), is now being considered as the primary reactive chemical component in food decontamination. Despite exciting developments in this field recently, at present there is no comprehensive review specifically focusing on the comprehensive effects of PAW on food safety and quality. Although PAW applications in biological decontamination have been extensively evaluated, a complete analysis of the most recent developments in PAW technology (e.g., PAW combined with other treatments, and PAW applications in chemical degradation and as curing agents) is nevertheless lacking. Therefore, this review focuses on PAW applications for enhanced food safety (both biological and chemical safeties) according to the latest studies. Further, the subsequent effects on food quality (chemical, physical, and sensory properties) are discussed in detail. In addition, several recent trends of PAW developments, such as curing agents, thawing media, preservation of aquatic products, and the synergistic effects of PAW in combination with other traditional treatments, are also presented. Finally, this review outlines several limitations presented by PAW treatment, suggesting several future research directions and challenges that may hinder the translation of these technologies into real-life applications.  相似文献   

2.
Nonthermal processing methods are often preferred over conventional food processing methods to ensure nutritional quality. Nonthermal plasma (NTP) is a new field of nonthermal processing technology and seeing increased interest for application in food preservation. In food applications of NTP, liquid interactions are the most prevalent. The NTP reactivity and product storability are altered during this interaction. The water activated by NTP (plasma‐activated water [PAW]) has gained considerable attention during recent years as a potential disinfectant in fruits and vegetable washing. However, detailed understanding of the interactions of NTP reactive species with food nutritional components in the presence of water and their stability in food is required to be explored to establish the potential of this emerging technology. Hence, the main objective of this review is to give a complete overview of existing NTP–liquid interactions. Further, their microbial inactivation mechanisms and the effects on food quality are discussed in detail. Most of the research findings have suggested the successful application of NTP and PAW for microbial inactivation and food preservation. Still, there are some research gaps identified and a complete analysis of the stability of plasma reactive species in food is still missing. By addressing these issues, along with the available research output in this field, it is possible that NTP can be successfully used as a food decontamination method in the near future.  相似文献   

3.
Minimally processed fruits and vegetables are one of the major growing sectors in food industry. This growing demand for healthy and convenient foods with fresh-like properties is accompanied by concerns surrounding efficacy of the available sanitizing methods to appropriately deal with food-borne diseases. In fact, chemical sanitizers do not provide an efficient microbial reduction, besides being perceived negatively by the consumers, dangerous for human health, and harmful to the environment, and the conventional thermal treatments may negatively affect physical, nutritional, or bioactive properties of these perishable foods. For these reasons, the industry is investigating alternative nonthermal physical technologies, namely innovative packaging systems, ionizing and ultraviolet radiation, pulsed light, high-power ultrasound, cold plasma, high hydrostatic pressure, and dense phase carbon dioxide, as well as possible combinations between them or with other preservation factors (hurdles). This review discusses the potential of these novel or emerging technologies for decontamination and shelf-life extension of fresh and minimally processed fruits and vegetables. Advantages, limitations, and challenges related to its use in this sector are also highlighted.  相似文献   

4.
Plasma-activated water (PAW) production and use is an emerging technology for enhancing product safety, extending shelf-life and quality retention, and promoting sustainable processing. At present, it has generated considerable attention for applications to starch and flour modification. This work presents an innovative approach to wheat flour (WF) modification using PAW and heat-moisture treatment (HMT), and compares this approach with distilled water (DW) treatment. As expected, PAW and HMT promoted flour granule clustering, increasing particle size. These treatments accelerated molecular interactions between wheat starch and non-starch components (e.g. proteins and lipids), which eventually increased resistant starch (RS) content. Addition of modified flour (30 g) to WF positively affected its rheological properties, and closely bound water content of the dough. The gluten protein network structure in the dough suffered varying degrees of damage. In conclusion, our results showed that PAW and HMT may provide a novel beneficial method for modifying wheat flour during food processing to obtain viscoelastic wheat flour products with nutritional functions.  相似文献   

5.
The efficacy of nonthermal plasma-activated water (PAW) in the decontamination of mung bean sprouts was evaluated in this work. After being treated with PAW for 30 min, the populations of total aerobic bacteria and total yeasts and moulds on mung bean sprouts were decreased by 2.32- and 2.84- log10 CFU/g, respectively. The PAW treatment had no significant effect on the antioxidant potential of mung bean sprouts as shown by using 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH•) scavenging activity assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) method, and ferric reducing antioxidant power (FRAP) assay (p > 0.05). Additionally, the PAW treatment caused no significant changes in the total phenolic and flavonoid contents, nor the sensory characteristics of mung bean sprouts (p > 0.05). Reactive species such as nitrates, nitrites, and H2O2 were generated in PAW, which presumably contributed to the disinfection efficacy of PAW. These data show that PAW can be used as a promising nonthermal technology for the control of microbial contamination in sprouts.Industrial relevanceEdible sprouts are common food ingredients across the world. However, sprouts can be contaminated by pathogenic microorganisms, which may result in health risks to humans. Recently, PAW has been shown to be a safe and effective method for food surface sanitation. However, the application of PAW in the microbial control for sprouts is less investigated. In this study, the influences of PAW on the microbial load, chemical and sensory quality of mung bean sprouts were investigated for the first time. The results showed that PAW could effectively inactivate bacteria and yeasts and moulds on mung bean sprouts without resulting in significant changes in the antioxidant capacities, total phenolic and flavonoid contents, and sensory characteristics of mung bean sprouts. These data indicated that PAW can be used as a promising nonthermal technology for reducing microbial populations on sprouts.  相似文献   

6.
Recently, non-thermal plasma-activated water (PAW) became a relatively new concept developed in the food industry. The effects of PAW on fruit decay, microbial loads, and quality of postharvest Chinese bayberry were investigated. Chinese bayberries were treated by PAW for 0.5, 2, or 5 min and then stored at 3 °C for 8 days. Experimental results show that all PAW treatments could reduce fruit decay by around 50 % compared to control at the end of storage. There was no dose-effect relationship between PAW treatment time and fruit decay. Meanwhile, a 0.5-min PAW treatment could remarkably decrease microbial population on Chinese bayberries during storage, and the maximum reductions reached around 1.1 log CFU/g both for bacteria and fungi at the end day of storage. Scanning electron microscopy results reveal that PAW could significantly change the morphology of microbial cells on Chinese bayberries. Moreover, physicochemical properties analysis of PAW demonstrates that the microbial inactivation of PAW is mainly attributed to the combined action of high oxidation reduction potential and low pH. Additionally, PAW-treated fruits exhibited markedly higher firmness, color index of red grapes, and total soluble solids than the control did at the eighth day. These results indicate that PAW might be a promising strategy to control fruit decay and maintain quality of Chinese bayberry during postharvest storage.  相似文献   

7.
8.
We assessed the efficacy of bacterial inactivation using a dielectric barrier discharge in three different plasma setups: plasma gas (PG), and direct and indirect plasma activated water (PAW), where deionized water was placed either between or away from the electrodes, respectively. We used bioluminescent Escherichia coli K12 lux as a model bacteria in a biosensor format to study the inactivation kinetics and mechanism of action of produced PG and PAW. The results showed that uninterrupted application of PG decreased bioluminescence rapidly by 1-log within the first minute and 3.6-log after 10 min of treatment. Exposing the bacterial culture with a sublethal dose of PAW (1 mL) rapidly decreased the bioluminescence; however, luminescence slowly recovered after exposure. Subsequent treatment with PAW decreased the bioluminescence to a lesser extent. In addition, direct PAW induced a greater decrease in bioluminescence compared to indirect treatments for both single and multiple exposures. In contrast to the PG, PAW treatments induced a lower bactericidal effect with 0.11 to 0.22-log reduction for indirect PAW and 0.2 to 0.32-log for direct PAW. Our results also indicate that antimicrobial activity of PAW decreased slowly within 20 min of its preparation. The rapid decrease in bioluminescence followed by a partial recovery in a repeatable pattern suggests an incomplete inactivation, and that the reducing power of the cell helps them to survive. Moreover, the complete and partial oxidation of NADH solutions in vitro by PG and PAW, respectively, strongly suggest that the lux fluorophore FMNH2 and other reducing cofactors could be the target of such treatment before other cell components. This hypothesis was supported by the tendency to recover luminescence by potentially replenishing the pool of FMNH2 after plasma treatment. It is also important to consider that the reducing power of the cell (NADH, NADPH, and FMNH2) is crucial for cell viability mostly due to reducing potential for critical metabolic reactions. Therefore, in situ bioluminescence monitoring technology can potentially serve as a unique approach to elucidate the mechanism of bacteria inactivation in real time.Industrial relevanceThe present study developed three dielectric barrier discharge (DBD) plasma setups to produce plasma gas and plasma activated water, which can disinfect both food products and their contact surfaces regardless of geometry. Our in situ bioluminescent technology elucidated bacterial inactivation mechanisms of plasma treatments, which may potentially suggest sufficient exposures to plasma resulting in safe food products without deteriorating their quality. The results will help food manufacturers apply new plasma-based disinfection methods with appropriate treatments.  相似文献   

9.
Fresh walnuts exhibit unique flavor and multiple biological activities, but they are highly perishable due to the lack of practical and cost-effective postharvest preservation technique. In this paper, the quality of fresh walnut kernels treated with deionized water, water containing ClO2, and plasma-activated water (PAW) for 15 min were monitored during 4 °C storage. Results showed that 100-s PAW treatment reduced the total viable count by 1.15 log CFU/g immediately after treatment. The bactericidal and bacteriostatic effects of PAW was superior to 4 mg/L ClO2. PAW-treated samples retained their flavor during 12d storage at 4 °C, while other samples generated odor at 6d. Moreover, PAW treatment could prevent nutritional loss, browning, and rancidity. The increases of peroxidase, polyphenol oxidase, and lipase activities were inhibited after PAW treatment. Hence, PAW treatment can be applied for the preservation of fresh walnut kernels due to its effect on microbial inhibition and quality maintenance.Industry relevanceNon-thermal plasma is an emerging non-thermal food processing technology due to its advantages of non-destructive, pollution-free, high efficiency and short treatment periods. In this study, plasma-activated water (PAW) was applied in the preservation of fresh walnut kernels, and inhibited flavor changes, nutritional loss, microbial growth, browning, and oxidation reaction. When approaching food preservation technologies, especially for heat-sensitive materials, PAW treatment as a novel technique appears to have far-reaching implications for increasing markets by antimicrobial properties, and avoiding the negative impacts on quality attributes.  相似文献   

10.
Consumer awareness on the side effects of chemical preservatives has increased the demand for natural preservation technologies. An efficient and sustainable alternative to current conventional preservation techniques should guarantee food safety and retain its quality with minimal side effects. Photosensitization, utilizing light and a natural photosensitizer, has been postulated as a viable and green alternative to the current conventional preservation techniques. The potential of curcumin as a natural photosensitizer is reviewed in this paper as a practical guide to develop a safe and effective decontamination tool for industrial use. The fundamentals of the photosensitization mechanism are discussed, with the main emphasis on the natural photosensitizer, curcumin, and its application to inactivate microorganisms as well as to enhance the shelf life of foods. Photosensitization has shown promising results in inactivating a wide spectrum of microorganisms with no reported microbial resistance due to its particular lethal mode of targeting nucleic acids. Curcumin as a natural photosensitizer has recently been investigated and demonstrated efficacy in decontamination and delaying spoilage. Moreover, studies have shown the beneficial impact of an appropriate encapsulation technique to enhance the cellular uptake of photosensitizers, and therefore, the phototoxicity. Further studies relating to improved delivery of natural photosensitizers with inherent poor solubility should be conducted. Also, detailed studies on various food products are warranted to better understand the impact of encapsulation on curcumin photophysical properties, photo‐driven release mechanism, and nutritional and organoleptic properties of treated foods.  相似文献   

11.
Plasma-activated microbubble water (PMBW) is an environmentally friendly sanitizer that possesses potent antimicrobial activities and imparts substantial shear stress to food contact surfaces. In this study, PMBW, plasma-activated water (PAW), microbubble water (MBW), and chlorine water (100 mg/L) were used to clean PVC tubing inoculated by Klebsiella michiganensis. The sanitizer flow with microbubble was numerically simulated by COMSOL Multiphysics® and the shear stress imparted to the bacteria was calculated. The presence of microbubbles in the flow increased the shear stress imparted to the bacteria. The number of K. michiganensis on the inner surfaces of the pipes was ∼7.4 log CFU/cm2 before washing. PMBW showed the most potent antimicrobial effect, which reduced the number of bacteria by 3.1 log CFU/cm2 at a flow velocity of 1 m/s. PAW, MBW, and chlorine water reduced a similar number of bacteria (2.4 log CFU/ cm2 to 2.6 log CFU/ cm2) at all the selected flow velocities. DI water only reduced the number of K. michiganensis by 0.7 log CFU/ cm2 at 1 m/s flow velocity.Industrial relevancePMBW can potentially be an environmentally friendly sanitizer, which can be employed by food processors to clean their food processing equipment with minimized usage of chemical sanitizers. The technology developed in this study will benefit the food industry by mitigating potential risks of foodborne pathogens without generating environmental hazards.  相似文献   

12.
Fresh produce has been recognised as a healthy food, thus there is increasing consumer demand for fresh fruit and vegetables. The shelf‐life of fresh produce, however, is relatively short and is limited by microbial contamination or visual, textural and nutritional quality loss. There are many methods to reduce/eliminate microorganisms present in food and ozone treatment is one of them. The use of ozone by the fresh produce industry is a good alternative to chemical treatments, e.g. the use of chlorine. The effectiveness of ozone as an antimicrobial agent has previously been reviewed and has been updated here, with the latest findings. The main focus of this review is on the effects of ozone on the fresh produce quality, defined by maintenance of texture, visual quality, taste and aroma, and nutritional content. Furthermore, ozone has been found to be efficient in reducing pesticide residues from the produce. The treatments that have the ability to reduce microbial contamination of the product without having an adverse effect on its visual, textural and nutritional quality can be recommended and subsequently incorporated into the supply chain. A good understanding of all the benefits and limitations related to the use of ozone is needed, and relevant information has been reviewed in this paper. © 2014 Society of Chemical Industry  相似文献   

13.
等离子体活化水(Plasma-activated water,PAW)具有活性组分含量高、低pH和氧化还原电位较高等特点,具有杀菌、抗生物被膜、促进种子萌发和幼苗生长等功能。作为一种新型的环境友好型非热加工技术,PAW在食品工业中的潜在应用前景受到广泛关注。本文综述了PAW在食品杀菌保鲜、肉制品护色、细菌生物被膜控制等领域中的应用研究,为PAW技术在食品工业中的广泛应用提供参考。  相似文献   

14.
The effects of various sanitizers on the viability and cellular injury to structures of Escherichia coli and Listeria innocua were investigated. A food grade organic acidic formulation (pH 2.5) and acidic, neutral, and basic electrolyzed water [AEW (pH 2.7, oxidation reduction potential; ORP: 1100 mV, free available chlorine; FAC: 150 ppm), NEW (pH 6.9, ORP: 840 mV, FAC: 150 ppm), BEW (pH 11.6, ORP: -810 mV)] were used to treat E. coli and L. innocua cells. After 10 min of exposure to the sanitizers, changes to the bacterial numbers and cell structures were evaluated by plate counting and transmission electron microscopy (TEM), respectively. It was concluded from the results that the sanitizers reduced the E. coli cells between 2 and 3 log CFU/mL. Except for the BEW treatment, reductions in L. innocua population were greater (>1 log CFU/mL) than that of E. coli for all treatments. Data from the TEM showed that all sanitizers caused changes to the cell envelope and cytoplasm of both organisms. However, smaller changes were observed for L. innocua cells. Decrease in the integrity of the cell envelope and aggregation of the cytoplasmic components appeared to be mainly because of exposure to the sanitizers. The organic acid formulation and AEW were the most effective sanitizers against bacterial cells, indicating that penetration of acidic substances effectively caused the cell inactivation. PRACTICAL APPLICATION: An understanding of the method in which E-water and an acidic sanitizer cause injury to E. coli and L. innocua would be helpful in selecting an effective chemical agent as a food safety tool. This will allow a scientist to target similar microorganisms such as food borne bacteria with structures that are vulnerable to the sanitizer.  相似文献   

15.
This study evaluated resistance to sanitizing solutions of Escherichia coli O157:H7 cells forming biofilms on stainless steel coupons exposed to inoculated meat decontamination runoff fluids (washings). A previously acid-adapted culture of a rifampicin-resistant derivative of E. coli O157:H7 strain ATCC 43895 was inoculated in unsterilized or sterilized combined hot-water (85 degrees C) and cold-water (10 degrees C) (50/50 [vol/vol]) composite water (W) washings (pH 6.29 to 6.47) and in W washings mixed with 2% acetic acid (pH 4.60 to 4.71) or in 2% lactic acid W washings (pH 4.33 to 4.48) at a ratio of 1/99 (vol/vol). Stainless steel coupons (2 by 5 by 0.08 cm) were submerged in the inoculated washings and stored for up to 14 days at 15 degrees C. Survival of E. coli O157:H7 was determined after exposure (0 to 60 s for cells in suspension and 0 to 300 s for attached cells) to two commercial sanitizers (150 ppm peroxyacetic acid and 200 ppm quaternary ammonium compound) at 2, 7, and 14 days. E. coli O157:H7 attached more rapidly to coupons submerged in washings containing the natural flora than to those without. The attached cells were more resistant to the effects of the sanitizers than were the cells in suspension, and survival was highest in the presence of the natural flora. Attached cells in the presence of dilute acid washings were more sensitive to subsequent sanitizer treatments than were cells generated in the presence of W washings. Under the conditions of this study, cells of E. coli O157:H7 in W washings were more sensitive to acidic (peroxyacetic acid) than to alkaline (quaternary ammonium) sanitizers during storage. These results suggest that meat processing plants that apply no decontamination or that use only water washings of meat should consider using acidic sanitizers to enhance biofilm removal. Plants that apply both water and acidic washings may create a sublethal acid-stressing environment in the runoff fluids, sensitizing biofilm cells to subsequent sanitizing treatments.  相似文献   

16.
Consumers demand high-quality processed foods with minimal changes in nutritional and sensory properties. Nonthermal methods are considered to keep food quality attributes better than traditional thermal processing. Pulsed light (PL) is an emerging nonthermal technology for decontamination of food surfaces and food packages, consisting of short time high-peak pulses of broad spectrum white light. It is considered an alternative to continuous ultraviolet light treatments for solid and liquid foods. This paper provides a general review of the principles, mechanisms of microbial inactivation, and applications of PL treatments on foods. Critical process parameters that are needed to be optimized for a better efficiency of PL treatments are also discussed. PL has considerable potential to be implemented in the food industry. However, technological problems need to be solved in order to avoid food overheating as well as to achieve better penetration and treatment homogeneity. In addition, a more extensive research is needed to understand how PL affects quality food attributes.  相似文献   

17.
For food and feed safety of edible insects, effective decontamination methods need to be evaluated and developed. Traditional decontamination and preparation methods were reviewed and thermal and innovative inactivation methods for the decontamination of mealworm larvae were evaluated and compared. The impact of the surface decontamination techniques direct and indirect plasma treatment, and of volumetric methods such as high hydrostatic pressure treatment (400, 500, and 600 MPa) and thermal treatments (45 °C and 90 °C) for up to 15 min on the surface microbial load and on the overall microbial count of mealworm larvae (Tenebrio molitor) have been investigated. It was found that the indirect plasma treatment was an effective means for the surface decontamination of mealworm larvae, whereas high hydrostatic pressure at 600 MPa and thermal treatments in a water bath at 90 °C in comparison resulted in the highest reduction of the overall count. It is thus concluded that volumetric methods are favorable for the inactivation of the gut microbiota of insects.Industrial relevanceEdible insects represent a valuable alternative protein source that could contribute to food and feed security and are industrially mainly unexploited. For a successful marketing of edible insects food and feed safety has to be ensured and effective decontamination methods need to be developed.  相似文献   

18.
The need for enhancing microbial food safety and quality, without compromising the nutritional, functional, and sensory characteristics of foods, has created an increasing interest in innovative technologies in food industry. Plasma is an emerging, green processing technology offering many potential applications and fulfills the need of the industry. The present review presents the latest developments and applications of plasma technology in food industry. Recent research investigations showed that plasma processing have caught the interest of various areas of industry including cereal, meat, poultry, dairy, fruits, vegetables, packaging, etc. Plasma processing helps to modify the food material for the desirable trait, and maintains the nutritional and textural properties in addition to microbial decontamination.  相似文献   

19.
In this study, an intervention non-thermal processing technology plasma-activated slightly acidic electrolyzed water (PASW) was developed to better preserve salmon fillets. Compared to the plasma-activated water (PAW) and slightly acidic electrolyzed water (SAEW), PASW treatment was found to be more effective in inactivating microorganisms. After PAW, SAEW, or PASW treatment for 120 s, the population of Shewanella putrefaciens (S. putrefaciens) was reduced by 2.04, 2.62 and 2.08 Log CFU/mL (P < 0.05) using plate counts, respectively. The test for the leakage of nucleic acids and protein in intracellular contents confirmed that PASW caused serious damage to the microbial cell structural integrity compared to that alone PAW or SAEW. Meanwhile, scanning electron microscopic observations also showed that PASW caused apparent bacterial structural changes. Besides, the PASW treatment did not alter color and textural properties of salmon fillets, and restrained lipid oxidation as compared to the control and SAEW treatments. In all, this study compared the bacterial inactivation mechanisms for PAW, SAEW, and PASW, and suggested that PASW was effective in inactivating S. putrefaciens of salmon fillets.Industrial relevancePlasma-activated slightly acidic electrolyzed water, an emerging technology in food processing, can be a potential green technology for the processing of aquatic food products. PASW treatment had higher disinfection efficacy than that of SAEW or PAW treatment alone, and no adverse effect on the quality of Atlantic salmon fillets. These results boost knowledge in the food preservation field, as well as the application of non-thermal processing in the food industry.  相似文献   

20.
Mycotoxins are a significant threat to food safety and quality. Over the years, mycotoxins have been detected in almost all food and feed crops without any regional barrier. Conventional techniques for decontamination of mycotoxin involve physical, chemical, and biological methods, but these technologies often impact the quality of food in terms of changes in nutritional and sensory attributes. We examined the effects of nonthermal techniques on mycotoxins and their producing fungi to remove or reduce mycotoxin levels in food products without compromising food quality. Nonthermal technologies employ different lethal agents (including ozone, cold plasma, light, pressure, radiation, ultrasound, electric field, and magnetic field) to degrade mycotoxins while minimising product thermal exposure. However, the degradation pathway and toxicology of treated products need further research for a better understanding. With such food process development and optimisation efforts, food processors can employ various nonthermal technologies as tools for delivering consumer-desired mycotoxin-free food products with intact nutritional and sensory quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号