首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
杨帆  吕振波  赵瑛祁 《当代化工》2014,(6):973-974,996
21世纪是全新的科学技术时代,茂金属聚合物是化学工业中新型树脂产品,其产品开发进展很快。本文综述了近些年茂金属催化剂的发展状况,系统的介绍了茂金属催化剂的主要特征和优势,并对茂金属烯烃聚合物的加工和应用情况进行了阐述。  相似文献   

2.
茂金属聚合物的加工与应用现状   总被引:4,自引:1,他引:3  
综述了茂金属聚合物加工对工艺和设备的要求,同时对茂金属聚合物的应用现状和发展趋势做了探讨。  相似文献   

3.
茂金属催化剂及烯烃高分子材料研究新进展   总被引:4,自引:0,他引:4  
介绍茂金属催化剂的一般组成、主要特性及在烯烃聚合催化技术所具有的显著优势和近年研究取得的一些新进展。详细叙述采用茂金属催化工艺技术合成的一些烯烃聚合物,如聚乙烯(PE)、聚丙烯(PP)、间规聚苯乙烯(sPS)、茂金属环烯烃、茂金属乙丙橡胶、茂金属乙烯-辛烯共聚物等。这些茂金属聚合物与传统催化剂合成的聚合物相比,具有更优良的特性和更广阔的应用范围。许多用传统催化剂难以合成的材料,在采用茂金属催化技术后变得容易进行。在烯烃聚合物合成中茂金属催化剂正在替代传统催化剂。茂金属催化剂在全球增长非常迅速,具有广阔的应用和市场前景。  相似文献   

4.
介绍了茂金属在催化不饱和聚合物加氢的应用、机理、高效催化体系及合成方法的研究进展,重点综述了加氢活性高的茂钛催化体系。指出茂金属是一种很有市场前景的加氢催化剂,多元化降低成本是茂金属催化不饱和聚合物加氢工业突破的关键。  相似文献   

5.
茂金属催化剂及其烯烃聚合物研究进展   总被引:7,自引:0,他引:7  
综述了近年来茂金属催化剂的发展,介绍了茂金属催化剂的主要特征,并对茂金属烯烃聚合物的加工和应用情况进行了阐述。  相似文献   

6.
市场动态     
茂金属聚合物步入高速增长期 据Freedonia最新研究结果表明,未来几年,全球茂金属聚合物市场将步入高速增长阶段。其中美国市场对茂金属聚合物的需求将以每年超过20%的速率高速增长。到2006年,美国国内对茂金属聚合物的需求将达到218万t,比2001年增长一倍以上,占整个美国聚烯烃市场总量的10%。  相似文献   

7.
茂金属聚烯烃的特性和应用   总被引:2,自引:0,他引:2  
李焉 《塑料》1999,28(3):1988
从90年代初以来应用茂类金属化合物催化剂体系合成聚烯烃的技术在很多公司进入工业化生产阶段,随之其加工性能研究和产品开发工作也进展很快.茂金属聚合物的特性引起人们的广泛关注,关于茂金属聚合物的信息和报道越来越多.本文选取了从1992年~1997年间的部分文献,综合介绍了茂金属聚合物(sPP、m-LLDPE、PS、和COC等)的物理性能、加工特性和产品应用的基本情况.  相似文献   

8.
介绍了茂金属催化剂的主要特点及在烯烃聚合催化技术中所具有的显著优势,以及近年研究取得的一些进展。详细叙述了采用茂金属催化工艺技术合成的一些烯烃聚合物,如聚乙烯(PE)、聚丙烯(PP)的性能及应用。这些茂金属聚合物与传统催化剂合成的聚合物相比,具有更优良的特性和更广阔的应用领域。  相似文献   

9.
中国专利     
《合成树脂及塑料》2004,21(6):80-81
改善茂金属聚乙烯加工性能的方法与设备,茂金属烯烃聚合催化剂及其制备方法,茂金属钛化合物,用茂金属自由基聚合催化剂制备乙烯基单体聚合物,高浓度聚烯烃白色母粒及其制备方法  相似文献   

10.
载体型茂金属催化剂   总被引:4,自引:0,他引:4  
对载体型茂金属催化剂研究进展进行了评述,讨论了茂金属催化剂载体化方法,载体和茂金属载体化对催化剂性能和聚合物性质的影响以及各种载体型茂金属催化剂对烯烃聚合的催化行为,还简要介绍了生产双峰分子量分布聚合物的双金属催化剂。  相似文献   

11.
有机载体负载茂金属催化剂研究进展   总被引:1,自引:0,他引:1  
综述了近年来天然高分子、聚合物等有机载体用于负载茂金属催化剂的研究现状,评述了有机载体型茂金属催化剂的特点、负载方式、负载化对催化烯烃聚合性能和聚合物性能的影响。分析表明,进一步提高有机载体型茂金属催化剂的活性、改善有机载体的形态和结构仍是值得探索的课题。  相似文献   

12.
简要介绍了茂金属催化剂的结构及催化机理,综述了近年来国内外茂金属催化体系用于选择性氢化共轭二烯聚合物方面的研究进展,对比了不同类型茂金属催化剂在氢化SBS、SIS时的活性,对国内相关产业的发展提出了建议。  相似文献   

13.
This article reports a study of some functionalized polyolefins evaluated as compatibilizers in polyethylene nanocomposites. The functionalized polymers were prepared by direct metallocene‐mediated copolymerizations of ethylene and a functional comonomer. The prepared nanocomposites were evaluated for mechanical and barrier property enhancement. A good combination of mechanical and barrier properties was obtained with the metallocene‐based functionalized polyethylene. The toughness–stiffness balance was better than or comparable to that achieved with conventional functionalized polymers such as maleic anhydride grafted polyethylene. The results also indicated that these metallocene‐based functionalized polyolefins, when used as compatibilizers, could have relatively higher molar masses and lower functionality than those of conventional post‐reactor‐modified compatibilizers, and so the drawbacks associated with the latter could be avoided. Their inherent properties could also further improve the final nanocomposite properties. This was attributed to the more homogeneous nature of metallocene‐catalyzed polymers in comparison with post‐reactor‐modified products. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1094–1100, 2004  相似文献   

14.
Abstract

This paper compares the rotomouldability and mechanical properties of conventional polyethylenes with metallocene polymers having a similar melt flowrate or the same density. The rotomouldability has been evaluated in terms of bubble removal, cycle times, and heat stability during the moulding process. The mechanical properties, such as tensile strength and peak impact energy, were measured on parts produced using a variety of moulding conditions. It was found that the metallocene polymers display greater toughness if subjected to the same moulding conditions as the conventional polymers. Conversely, the same toughness can be obtained in both materials if shorter cycle times are used for the metallocenes. This behaviour has been linked to the relaxation behaviour of the molecules in the solid state. Other material parameters, such as the nature of the comonomer, the long chain branching density, and the crystalline morphology were studied by NMR, DSC, and polarising light microscopy. The differences between the molecular structures of the two types of polyethylene can be used to explain why the metallocene materials possess many rheological and other characteristics that are desirable in rotational moulding.  相似文献   

15.
The relationship between the molecular structure and the thermal and rheological behaviors of metallocene‐ and Ziegler–Natta (ZN)‐catalyzed ethylene copolymers and high‐density polyethylenes was studied. Of special interest in this work were the differences and similarities of the metallocene‐catalyzed (homogeneous) polymers with conventional coordination‐catalyzed (heterogeneous) polyethylenes and low‐density polyethylenes. The short‐chain branching distribution was analyzed with stepwise crystallization by differential scanning calorimetry and by dynamic mechanical analysis. The metallocene copolymers exhibited much more effective comonomer incorporation in the chain than the ZN copolymers; they also exhibited narrower lamellar thickness distributions. Homogeneous, vanadium‐catalyzed ZN copolymers displayed a very similar comonomer incorporation to metallocene copolymers at the same density level. The small amplitude rheological measurements revealed the expected trend of increasing viscosity with weight‐average molecular weight and shear‐thinning tendency with polydispersity for the heterogeneous linear low‐density polyethylene and very‐low‐density polyethylene resins. The high activation energy values (34–53 kJ/mol) and elevated elasticity found for some of our experimental metallocene polymers suggest the presence of long‐chain branching in these polymers. This was also supported by the comparison of the relationship between low shear rate viscosity and molecular weight. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1140–1156, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号