首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burns in children carry many age-related problems. Maintenance of immobility and cleanness of absorbent dressings are very difficult, especially in infancy and large wounds. These problems are very important when meshed skin grafts are used. Graft survival is disturbed by patient movements and septic colonization, especially in the early postoperative period. Over a two years period we have been applying Nobecutan as meshed skin graft fixation procedure, antiseptic and protecting wound coat. The use of Nobecutan is a time-saving technique. No sutures nor staples are employed, which is very important when working with burned children. No local adverse effects, nor prolongation of wound healing had been observed.  相似文献   

2.
3.
Complementary DNA was synthesized using polyadenylated nuclear RNA of cultured Drosophila cells as template. The kinetics of hybridization of this cDNA with nuclear RNA indicated that the complexity of this RNA population is five to ten times greater than that of cytoplasmic mRNA. The same difference in the fraction of DNA represented was obtained when nuclear and cytoplasmic RNA were hybridized with labeled unique sequence DNA. The fraction of the DNA sequences represented in total number of polyadenylated nuclear RNA is much higher than that represented in cytoplasmic RNA.  相似文献   

4.
The lipoxygenase activity from cucumber cotyledons grown with their embryonic axis was separated into two fractions having M(r)s of 90,000 and 96,000, respectively, by hydrophobic chromatography. However, from de-embryonated cucumber cotyledons, only one form of lipoxygenase having a M(r) of 90,000 was purified. The three lipoxygenases could not be distinguished from each other either immunologically or by their enzymatic properties. Furthermore, peptide maps of the 90,000 and 96,000-lipoxygenases were identical. In a crude homogenate of cucumber cotyledons, the 96,000-lipoxygenase was rapidly degraded to the 90,000-form. Thus, it was inferred that the 90,000-lipoxygenase was probably the 96,000-form which had lost a peptide fragment of 6,000. It is suggested that there is a specific proteolytic activity for the degradation of 96,000-lipoxygenase. Estimation of changes in the proteolytic activity during seedling growth suggests that the activity at least partly contributes to the rapid in vivo degradation of cucumber cotyledon lipoxygenase.  相似文献   

5.
6.
Ribozymes containing 2'-fluoro- and 2'-amino-modified pyrimidine nucleosides in combination with terminal phosphorothioate linkages were targeted against HTLV-I tax RNA. In order to examine the activity of such chemically modified ribozymes in the nuclear environment, they were incubated with nuclei of a Tax-transformed mouse fibroblast cell line. Ribozyme cleavage of tax RNA was analyzed by the RNase protection assay. Comparison of the cleavage of tax RNA isolated nuclei with that of tax RNA present in nuclei suspension revealed a 30 times more efficient cleavage of the latter one. Pre-treatment with proteinase K and SDS abolished the enhancement of the ribozyme-mediated RNA cleavage. Catalytically inactive ribozymes did not yield any cleavage products. These results demonstrate an augmenting effect of nuclear proteins on the ribozyme-mediated RNA cleavage.  相似文献   

7.
8.
We have introduced 13 base substitutions into the coat protein gene of RNA bacteriophage MS2. The mutations, which are clustered ahead of the overlapping lysis cistron, do not change the amino acid sequence of the coat protein, but they disrupt a local hairpin, which is needed to control translation of the lysis gene. The mutations decreased the phage titer by four orders of magnitude but, upon passaging, the virus accumulated suppressor mutations that raised the fitness to almost wild-type level. Analysis of the pseudorevertants showed that the disruption of the local hairpin, controlling expression of the lysis gene, had apparently been so complete that its restoration by chance mutations could not be achieved. Instead, alternative foldings initiated by the starting mutations were further stabilized and optimized. Strikingly, in the pseudorevertants analyzed, translational control of the lysis gene had been restored. This feat was accomplished by, on average, four suppressor mutations that generally occurred at codon wobble positions. We also introduced 11 mutations in a hairpin more upstream in the coat protein gene and not implicated in lysis control. Here the titer dropped by three logs, but pseudorevertants with a fitness close to wild-type were soon generated. These pseudorevertants again were the result of the optimization of alternative foldings induced by the mutations. The transition of the secondary structure from wild-type to pseudorevertant could be visualized by structure probing. Our study shows that the folding of the RNA is an important phenotypic property of RNA viruses. However, its distortion can easily be overcome by optimizing alternative base-pairings. These new structures are not qualitatively equivalent to the original one, since they do not successfully compete with the wild-type.  相似文献   

9.
10.
The hok/sok system of plasmid R1, which mediates plasmid stabilization by the killing of plasmid-free cells, codes for two RNA species, Sok antisense RNA and hok mRNA. Sok RNA, which is unstable, inhibits translation of the stable hok mRNA. The 64nt Sok RNA folds into a single stem-loop domain with an 11 nt unstructured 5' domain. The initial recognition reaction between Sok RNA and hok mRNA takes place between the 5' domain and the complementary region in hok mRNA. In this communication we examine the metabolism of Sok antisense RNA. We find that RNase E cleaves the RNA 6nt from its 5' end and that this cleavage initiates Sok RNA decay. The RNase E cleavage occurs in the part of Sok RNA that is responsible for the initial recognition of the target loop in hok mRNA and thus leads to functional inactivation of the antisense. The major RNase E cleavage product (denoted pSok-6) is rapidly degraded by polynucleotide phosphorylase (PNPase). Thus, the RNase E cleavage tags pSok-6 for further rapid degradation by PNPase from its 3' end. We also show that Sok RNA is polyadenylated by poly(A) polymerase I (PAP I), and that the poly(A)-tailing is prerequisite for the rapid 3'-exonucleolytic degradation by PNPase.  相似文献   

11.
Dendritic cells (DCs) effectively process exogenous and endogenous Ag and present peptide in the context of both class I and class II molecules. We have demonstrated that peripheral blood DCs efficiently degrade synthetic class I peptides at their cell surface within minutes as determined by analyzing DC supernatants by HPLC. Fragments were verified as bona fide cleavage products by direct sequencing using collision-induced dissociation tandem mass spectrometry. The predominant degradative activities were 1) not secreted but associated with activity at the plasma membrane, 2) ecto-orientated, 3) not induced by peptide-specific interactions, and 4) not associated with nonspecific uptake. Sequence analysis indicated that both N- and C-terminal as well as endoproteolytic events were occurring at the cell surface. The primary exoproteolytic event was identified as CD13 or CD13-like activity through inhibition studies and could be inhibited by ubiquitin and metal-chelating agents. Endoproteolytic events could be inhibited in the presence of DTT, but the precise nature of this enzyme is still undetermined. Compared with the starting monocyte population, DCs cultured in the presence of granulocyte-macrophage CSF/IL-4 exhibited the highest degradative rate (4.3 nmol/min), followed by cultured monocytes (2.9 nmol/min) and freshly isolated monocytes (1.0 nmol/min). In addition to increased enzymatic activity, a change in substrate specificity was noted. Results are discussed with respect to APC loading, and alternatives are offered for circumventing such degradation.  相似文献   

12.
13.
In a variety of systems, histone mRNA has been shown to lack poly(A) (Adesnik and Darnell, 1972; Grunstein et al., 1973). We have found, however, that in Xenopus laevis oocytes, poly (A)-containing mRNA codes for histones, in a wheat germ cell-free system, based on the following criteria: first, co-migration with authentic X. laevis oocyte histones on polyacrylamide gels; second, no detectable incorporation of tryptophan; third, differential incorporation of lysine and methionine into histone fraction H2A; fourth, resistance of histone fraction H2A to cleavage with cyanogen bromide; and fifth, correspondence of tryptic peptide maps of partially purified cell-free products with authentic X. laevis oocyte histone. RNA which directs the synthesis of histones in the cell-free system is retained on oligo(dT)-cellulose, even after denaturation in 80% DMSO at 70 degrees C, thereby demonstrating the covalent attachment of polyadenylic acid sequences to the mRNA. Poly (A)- RNA (7S-14S fraction) was also found to code for histones using the same criteria. We discuss the significance of the finding that X. laevis oocytes contain two classes of histone mRNA as well as the potential developmental implications of this observation.  相似文献   

14.
15.
16.
Incubation of carcinogens with post-mitochondrial supernatant (PMS) and NADPH releases ribosomes from microsomes resulting in increased RNA concentration in post-microsomal supernatant. However, non-carcinogens fail to do so. Enhanced concentration of RNA in test over control samples can provide a useful index for the carcinogenicity of environmental pollutants.  相似文献   

17.
Polyadenylation contributes to the destabilization of bacterial mRNA. We have investigated the role of polyadenylation in the degradation of RNA by the purified Escherichia coli degradosome in vitro. RNA molecules with 3'-ends incorporated into a stable stem-loop structure could not readily be degraded by purified polynucleotide phosphorylase or by the degradosome, even though the degradosome contains active RhlB helicase which normally facilitates degradation of structured RNA. The exoribonucleolytic activity of the degradosome was due to polynucleotide phosphorylase, rather than the recently reported exonucleolytic activity exhibited by a purified fragment of RNase E (Huang, H., Liao, J., and Cohen, S. N. (1998) Nature 391, 99-102). Addition of a 3'-poly(A) tail stimulated degradation by the degradosome. As few as 5 adenosine residues were sufficient to achieve this stimulation, and generic sequences were equally effective. The data show that the degradosome requires a single-stranded "toehold" 3' to a secondary structure to recognize and degrade the RNA molecule efficiently; polyadenylation can provide this single-stranded 3'-end. Significantly, oligo(G) and oligo(U) tails were unable to stimulate degradation; for oligo(G), at least, this is probably due to the formation of a G quartet structure which makes the 3'-end inaccessible. The inaccessibility of 3'-oligo(U) sequences is likely to have a role in stabilization of RNA molecules generated by Rho-independent terminators.  相似文献   

18.
19.
Inconsistent findings from recent mortality studies of workers exposed to magnetic fields have led to calls for more detailed understanding of exposure distributions and metrics in various industries. The authors undertook personal monitoring at an automobile transmission plant to (a) learn if magnetic field exposure differences were present, (b) make assignments for a brain cancer study, and (c) compare two exposure indices. A wide range of average exposures occurred (i.e., 0.016-4.6 microtesla). Within-day variability was also large, and it reached 4 orders of magnitude for some workers. Unexpectedly, demagnetizers were found among the strong sources that contributed to elevated exposures. The authors used conventional summary measures to assign job groups to exposure categories, and they used a new index of exposure irregularity to make alternative assignments. These new assignments appeared to differ from the original ones with respect to work time in each exposure group (i.e., 54% of the work time fell into different exposure categories).  相似文献   

20.
The 2-5A system is an RNA degradation pathway that can be induced by the interferons (IFNs). Treatment of cells with IFN activates genes encoding several double-stranded RNA (dsRNA)-dependent synthetases. These enzymes generate 5'-triphosphorylated, 2',5'-phosphodiester-linked oligoadenylates (2-5A) from ATP. The effects of 2-5A in cells are transient since 2-5A is unstable in cells due to the activities of phosphodiesterase and phosphatase. 2-5A activates the endoribonuclease 2-5A-dependent RNase L, causing degradation of single-stranded RNA with moderate specificity. The human 2-5A-dependent RNase is an 83.5 kDa polypeptide that has little, if any, RNase activity, unless 2-5A is present. 2-5A binding to RNase L switches the enzyme from its off-state to its on-state. At least three 2',5'-linked oligoadenylates and a single 5'-phosphoryl group are required for maximal activation of the RNase. Even though the constitutive presence of 2-5A-dependent RNase is observed in nearly all mammalian cell types, cellular amounts of 2-5A-dependent mRNA and activity can increase after IFN treatment. One well-established role of the 2-5A system is as a host defense against some types of viruses. Since virus infection of cells results in the production and secretion of IFNs, and since dsRNA is both a frequent product of virus infection and an activator of 2-5A synthesis, the replication of encephalomyocarditis virus, which produces dsRNA during its life cycle, is greatly suppressed in IFN-treated cells as a direct result of RNA decay by the activated 2-5A-dependent RNase. This review covers the organic chemistry, enzymology, and molecular biology of 2-5A and its associated enzymes. Additional possible biological roles of the 2-5A system, such as in cell growth and differentiation, human immunodeficiency virus replication, heat shock, atherosclerotic plaque, pathogenesis of Type I diabetes, and apoptosis, are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号