首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为了更好地提高差分进化算法的全局探索和局部开发能力,提出了一种改进的差分进化算法。在该算法中,引入t分布变异算子将高斯变异和柯西变异的优点结合起来,根据以往的进化经验自适应地调整进化策略及交叉概率。通过四个典型的Benchmarks函数的测试结果表明算法具有良好的性能。  相似文献   

2.
基于改进差分进化算法的PID优化设计   总被引:2,自引:0,他引:2  
提出一种基于改进差分进化算法的PID控制器参数优化方法.针对差分进化算法的优化性能受控制参数取值和差分进化类型的影响较大,算法容易早熟收敛的问题,提出改进差分进化算法.该算法在标准差分进化理论基础上对差分矢量的初始种群、缩放因子、交叉概率和差分进化模式进行优化,将缩放因子和交叉概率由固定数值设计为随机函数,随着搜索过程的进行,自适应选取差分进化模式,从而增强搜索能力.在PID参数的优化设计中通过仿真实验研究,表明采用新方法获得的PID控制器性能优于基于常规方法、遗传算法和基本差分进化算法设计的PID控制器.  相似文献   

3.
提出一种基于logistic模型的自适应差分进化算法.该算法在运行过程中可自动调节缩放因子和交叉概率因子的大小,能在算法初期保持种群多样性,提高全局最优值的搜索能力,而在算法后期,随着局部最优值搜索能力的提高算法渐趋稳定.对几种典型Benchmarks函数进行了测试,实验结果表明所提出的算法收敛速度快、计算精度高.  相似文献   

4.
针对经典差分进化算法(DE)的优化性能容易受到变异策略和控制参数影响的问题,提出了一种参数自适应的精英变异差分进化算法(A parameter Adaptive Elite Mutation Eifferential Evolution algorithm, AMEDE).首先,提出一种精英变异策略的方法,其目的是为了方便获取优秀个体信息;其次,引入新的控制参数,使得算法可以在更大的搜索空间进行搜索;最后,利用自适应参数学习方法,为种群中的每个个体赋予不同的控制参数值,并根据种群多样性和精英个体的信息动态更新个体的参数,使算法避免过早的收敛并提高算法的收敛精度.对本文提出的AMEDE算法与其他6种改进差分进化算法(DE,CoDE,JaDE,JDE,SaDE,GPDE)在16个基准测试函数上进行了三组对比实验.实验结果表明,AMEDE算法在高维函数和低维函数上都具有搜索精度高、收敛速度快和鲁棒性强等优点.  相似文献   

5.
差分进化算法是一种简单有效的启发式全局优化算法,但是其优化性能受差分进化策略及控制参数取值的影响较大,不合适的策略和参数容易导致算法早熟收敛。因此,针对差分进化算法搜索过程中变异策略和控制参数的选择问题,文中提出了一种基于群体分布的自适应差分进化算法(Population Distribution-based Self-adaptive Differential Evolution,PDSDE)。首先,设计适应因子以衡量当前种群的分布情况,进而实现算法所处进化阶段的自适应判断;然后,根据不同进化阶段的特点,设计阶段特定的变异策略和控制参数,并设计自适应机制以实现算法策略和参数的动态调整,从而平衡算法的全局探测和局部搜索能力,以达到提高算法搜索效率的目的;最后,将所提算法与6种主流改进算法进行比较。15个典型测试函数的数值实验表明,所提算法在平均函数评价次数、求解精度、收敛速度等指标的评价优于文中给出的6种主流改进算法,因此可以证明所提算法的计算代价、优化性能和收敛性能更具优势。  相似文献   

6.
一种新的差分进化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对高维复杂函数的优化问题,提出了一种新的差分进化算法(NDE)。该算法在运行中根据迭代次数自动地调整交叉概率因子,从而在搜索的初始阶段提高种群多样性,而在搜索后期加强局部搜索能力。对几种经典函数的测试表明,新算法不仅具有很强的全局搜索能力,而且能有效避免早熟收敛问题。  相似文献   

7.
自适应二次变异差分进化算法   总被引:31,自引:1,他引:31  
提出一种基于群体适应度方差自适应二次变异的差分进化算法.该算法在运行过程中根据群体适应度方差的大小,增加一种新的变异算子对最优个体和部分其他个体同时进行变异操作,以提高种群多样性,增强差分进化算法跳出局部最优解的能力.对几种典型Benchmarks函数进行了测试,实验结果表明,该方法能有效避免早熟收敛,显著提高算法的全局搜索能力。  相似文献   

8.
一种带有随机变异的动态差分进化算法   总被引:2,自引:1,他引:2  
提出一种带有随机变异的动态差分进化算法.在这个算法中,两种不同的变异策略DE/rand/1和DE/best/1通过线性递减加权组合策略产生新的变异策略,以便动态利用DE/rand/1和DE/best/1的优点,并且引入一种指数递增交叉概率算子、线性递减缩放因子和一种随机变异机制以进一步提高算法的全局寻优能力.通过四个标准测试函数的测试结果表明,该算法是一种收敛速度快、求解精度高、鲁棒性较强,更适合求解高维复杂的全局优化问题.  相似文献   

9.
为了克服差分进化算法早熟收敛和寻优精度低的缺点,提出一种采用双变异策略的自适应差分进化算法(Adaptive Differential Evolution Algorithm using Double mutation strategies,DADE)。DADE引入基于种群相似度和中心解的双变异策略,有效平衡了算法的全局搜索和局部搜索;自适应交叉概率使种群个体向更新成功的个体学习,有利于后续种群的进化。在7个测试函数和3个电力系统动态经济调度(Dynamic Economic Dispatch,DED)问题上的优化结果表明,DADE算法与其他4种DE算法相比具有更强的全局寻优能力,且对电力系统动态经济调度问题的优化结果优于文献中所报道的结果。  相似文献   

10.
张强  邹德旋  耿娜  沈鑫 《计算机应用》2018,38(10):2812-2821
为了克服差分进化算法寻优精度低、收敛速度慢、稳定性差等不足,提出一种基于多变异策略的自适应差分进化算法(ADE-MM)。首先,在3个变异策略的选择过程中添加2个具有学习功能的扰动阈值,以提高种群多样性,扩大搜索范围;然后,根据上次迭代的成功参数自适应调整当前参数,提高寻优精度和寻优速度;最后,利用向量粒子池法和中心粒子法产生新的向量粒子,进一步提高寻优效果。使用8个函数、5种对比算法(RMDE、OLCPDE、JADE、SaDE、MDE_pBX)进行测试,且每种例子都独立执行30次。ADE-MM算法在均值和方差的比较中取得了全胜,其中在30维的情况下取得了5个独立胜利,3个并列胜利;在50维的情况下取得了6个独立胜利,2个并列胜利;在100维的情况下全部为独立胜利。同时在Wilcoxon rank sum test、胜率和算法耗时分析中,ADE-MM算法也取得优异的表现。实验结果表明,相对于其他5种对比算法,ADE-MM算法具有更强的全局寻优能力、收敛性和稳定性。  相似文献   

11.
针对差分进化算法易于陷入早熟收敛和局部搜索较慢的问题,提出了一种类似Nelder-Mead方法中的反射操作的变异策略,称为反射变异策略。不同于其他基本的差分策略,提出的变异策略具有明确的差分方向,具有更快的局部收敛速度。为了避免因差分方向的贪婪性而导致算法早熟的可能性增加,反射变异策略使用4个随机的个体完成一次变异操作。将基于反射变异策略的子代生成策略和自适应参数方法组合形成了基于反射变异策略的自适应差分进化算法(RMADE)。使用12个函数测试了RMADE的性能并与其他算法进行比较,结果表明RMADE具有较快的收敛速度和较好的全局探测能力,进而体现了反射变异策略的价值。  相似文献   

12.
差分演化算法有局部搜索能力不足、容易跌入局部最优等缺点,其搜索性能主要依赖于对杂交概率和缩放因子的设置。为了改善上述缺陷,对带归档的自适应差分演化算法JADE进行深入的研究与分析,提出了改进的自适应差分演化算法ZJADE。该算法采用斜帐篷混沌映射函数初始化种群,在每次迭代中为每个个体分别产生满足正态分布、柯西分布的杂交概率和满足正态分布的缩放因子,并且记录成功变异个体的杂交概率和缩放因子,引入统计杂交概率,采用两种策略自适应地更新杂交概率。在13个经典测试函数上将ZJADE算法与多种经典自适应差分演化算法进行对比,实验结果表明,ZJADE算法在解的精度与收敛速度上更优,具有更好的搜索性能。  相似文献   

13.
为了克服差分进化算法容易出现早熟和收敛速度慢的问题,提出了一种混合差分进化算法.该算法在趋药性差分进化算法(CDE)的基础上,通过对较优个体进行变异操作,维护了种群多样性、避免早熟;通过将较差的个体与较优个体进行杂交,提高了开采能力、加快了收敛速度.基于这两种策略,算法的开采能力与探索能力达到了平衡.用该算法解决标准函数优化问题,并将仿真结果与其他算法进行比较,数值结果表明该文算法具有较快的收敛速度和很强的跳出局部最优的能力.  相似文献   

14.
基于小生境的混沌变异差分进化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对高维复杂函数的优化问题,提出了基于小生境的混沌变异差分进化算法(CNDE)。算法结合小生境策略,使子种群高效独立地进行搜索,并引入混沌变异进行精细的遍历搜索,在运行中根据迭代次数自动地调整交叉概率因子从而使搜索的初始阶段提高种群多样性,而在搜索后期加强局部搜索能力。对3种经典函数的测试表明,新算法不仅具有很强的全局搜索能力,而且能有效避免早熟收敛问题。  相似文献   

15.
针对0-1非线性规划问题的特点,提出了一种适合于求解0-1非线性规划问题的改进差分进化算法。这个算法把差分进化算法和罚函数方法有机结合起来,在变异操作中加入0-1取整运算,在交叉操作中使用了指数递增交叉概率因子以提高算法的全局搜索能力和收敛速率。用8个例子进行了实验研究,结果表明这个改进的差分进化算法在收敛性、精度、鲁棒性强方面都比较好。  相似文献   

16.
为加强差分进化算法的全局搜索能力,提出了一种基于交叉变异策略的双种群差分进化算法(CMDPDE)。CMDPDE中,两个种群分别采用大小不同的缩放因子和交叉因子,在每代进化完毕后,对其中缩放因子和交叉因子较小的种群执行交叉或变异策略来寻找更优的个体,同时两个种群之间每10代进行一次信息交流。这种方式与单种群差分进化算法相比,可以通过双种群和交叉变异策略来增加解的多样性,使算法能在更大的范围内寻优。6个Benchmark函数的实验结果证明CMDPDE具有较好的寻优能力。  相似文献   

17.
近年来运用进化算法(EAs)解决多目标优化问题(Multi-objective Optimization Problems MOPs)引起了各国学者们的关注。作为一种基于种群的优化方法,EAs提供了一种在一次运行后得到一组优化的解的方法。差分进化(DE)算法是EA的一个分支,最开始是用来解决连续函数空间的问题。提出了一种改进的基于差分进化的多目标进化算法(CDE),并且将它与另外两个经典的多目标进化算法(MOEAs)NSGA-II和SPEA2进行了对比实验。  相似文献   

18.
求解函数优化的新型差异演化算法*   总被引:2,自引:1,他引:1  
针对差异演化算法存在早熟收敛和后期求解效率低的缺点,提出一种新型差异演化算法。该算法基于单种群,在演化过程中直接对当前种群进行变异、交叉和选择操作,无须差异演化算法中的中间过渡种群。此外,新型差异演化算法的变异与交叉概率是时变的,其中变异概率随着迭代次数的增加而减小;交叉概率随着迭代次数的增加而增加。对几个典型的测试函数进行仿真实验表明,该算法能够有效避免早熟收敛,改善了差异演化算法的优化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号