首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
齐大山鞍山式氧化铁矿石铁品位为28.09%,铁主要以赤铁矿、磁铁矿和褐铁矿的形式存在。原采用阶段磨矿—1段强磁选—螺旋溜槽重选—2段强磁选—反浮选流程选别,铁精矿回收率为75.30%,铁损失较大。为提高铁回收率,对磁选精矿采用SLon离心选矿机代替反浮选进行流程改造试验。结果表明,其他流程不变,磁选精矿经离心选矿机1粗1精选别,粗选尾矿+0.037 mm粒级由离心选矿机1次扫选,-0.037 mm粒级由摇床1次扫选,最终全流程闭路试验可获得铁精矿品位67.57%,铁回收率84.73%,尾矿含铁6.62%的良好指标。与现在生产流程相比,铁精矿回收率提高了9.43个百分点,产率增加约12个百分点,选矿成本大幅降低,经济效益可观,试验结果可作为选厂工业生产流程改造的参考依据。  相似文献   

2.
安徽某铜矿山现场采用优先浮铜-选铜尾矿磁选回收磁铁矿及磁黄铁矿-磁选尾矿浮选回收黄铁矿的工艺流程。浮选作业均采用常规浮选机,当原矿品位降低时,精矿铜品位难以达到设计指标。为提高铜精矿品位,在实验室试验的基础上,分别采用CCF型浮选柱和旋流-静态微泡浮选柱进行半工业试验。现场结果表明:采用浮选柱的精矿品位均高于同期现场精矿品位,其中CCF型浮选柱的精矿品位高达21.01%,比同期生产指标提高了2.9个百分点,旋流-静态微泡浮选柱的精矿品位为19.96%,比同期现场生产指标提高了1.05个百分点。说明CCF型浮选柱更适合于处理该矿石。  相似文献   

3.
用旋流-静态微泡浮选柱反浮选磁选铁精矿   总被引:1,自引:0,他引:1  
用旋流-静态微泡浮选柱和浮选机对某铁矿选厂含铁42.00%的低品位混合磁选铁精矿进行了提高精矿品位的反浮选对比小型试验,结果表明,同样是1次粗选,浮选柱精矿品位达67%左右,比浮选机高约3个百分点,但尾矿品位也较高。为此,对浮选柱进行了增设脉动磁系和稳流管的改进。改进后的浮选柱不仅保持了精矿品位高的优势,而且尾矿品位大幅度降低,1次粗选可使精矿品位达到67.85%,回收率为79.22%,而浮选机需经过一粗一精一扫3次选别才能获得与此相近的指标。  相似文献   

4.
酸化水玻璃对钼矿浮选的影响   总被引:2,自引:0,他引:2  
钼矿浮选时通常用水玻璃作为硅酸盐的抑制剂。将酸化后的水玻璃在实验室对新华钼矿矿石进行浮选,试验结果表明酸化水玻璃在改善浮选指标的同时可降低浮选药剂的用量。采用1段粗选、1段扫选、4段精选工艺流程进行开路试验,使用酸化水玻璃获得的最终精矿钼品位为41.83%、回收率为36.37%,尾矿钼品位为0.030%、钼损失率为12.50%,与未酸化水玻璃相比,精矿钼品位提高16.80个百分点,尾矿钼损失率减少1.50个百分点。  相似文献   

5.
浮选柱分选萤石矿的试验研究   总被引:2,自引:0,他引:2  
建立了浮选柱分选萤石矿试验系统,针对该萤石矿,确定样品制备最佳磨矿时间为10min.浮选柱分选萤石矿探索性实验结果表明:采用1粗1精4步分离流程,萤石产品最终品位为84.91%,回收率仅为69.42%,采用粗选黾矿后排方式,粗选尾矿中萤石品位可降至9.14%,同时,通过将精选的尾矿返回粗选,可增强后续分选入料的纯净性,并提高萤石回收率;在分离段加大抑制剂1的用量,可降低分离段黾矿品位,并获得回收率为79.59e、品位为96.25%的萤石精矿.将分离1和4的尾矿进行扫选,进一步降低了萤石损失.提高了回收率'.并得到扫选尾矿品位模型及柱分选萤石矿的最佳工艺流程.  相似文献   

6.
某铜冶炼渣中铜品位为 2.07%,根据其矿石性质特点,应用快速浮选—快浮尾矿、再二次浮铜的原则工艺流程,确定各试验条件。铜冶炼渣在磨矿细度为-0.045 mm 占 80% 的情况下,采用快速浮选—快浮尾矿再经过一次粗选、两次精选和一次扫选的工艺流程,进行闭路试验,可获得铜品位为 28.30%、铜回收率为 43.14% 的快浮精矿,以及铜品位为 22.56%、铜回收率为 42.47% 的铜精矿。  相似文献   

7.
为充分利用矿产资源,对某地低品位钒钛磁铁矿的选铁尾矿进行了综合回收磷灰石的浮选试验研究,通过条件试验确定了较优的工艺条件及药剂制度.结果表明,对P2O5品位为3.05%的磁选尾矿,经1次粗选、3次精选、1次扫选,中矿循序返回,可获得产率为8.38%、P2O5品位为33.50%、回收率为92.18%的优质磷精矿.  相似文献   

8.
本某胶磷矿浮选工艺是两次粗选,两次精选和一次扫选。在生产实践中存在一次精选泡沫刮出量多,最终尾矿品位偏高,产率和回收率偏低的问题。本文通过对原矿、两次粗选精矿、扫选精矿进行粒度和解离度分析,按照扫选精矿应返回至具有相近粒度和解离度的流程点的原则;同时对扫选精矿进行选矿试验分析,探索扫选精矿在只延长浮选时间的情况下所能达到的最好精矿指标;再结合原有的工艺和生产实践,确定扫选精矿的最佳返回流程,以达到更好的选矿指标。经过分析,决定把扫选精矿的返回工艺从从精选1进浆改至粗选2进浆。通过工艺改造,生产工艺指标得到改善,在原矿品位差别不大的情况下,尾矿品位下降了3.55个百分点,精矿产率提高了1.7个百分点,回收率提高了4.96个百分点。  相似文献   

9.
针对山东某极贫氰化尾渣矿石性质特点,合理利用氰离子、过量氧化钙等残留药剂对有价组分的抑制差异,采用不脱药、不加热、不洗涤的优先浮选铅—硫酸脱氰活化选铜工艺流程进行工艺条件试验研究。闭路试验结果表明:铅浮选采用丁基黄药、乙硫氮为捕收剂,经一次粗选两次扫选三次精选,可获得品位为21.07%、回收率为61.21%的铅精矿;浮铅尾矿经硫酸脱氰活化选铜,采用丁基黄药为捕收剂,经一次粗选三次扫选两次精选,可获得品位为10.75%、回收率为62.69%的铜精矿。其总尾矿可直接作为硫精矿,铜、铅精矿均可作为配矿出售,显现出良好的经济社会效益。  相似文献   

10.
某褐铁矿强磁选-反浮选试验研究   总被引:1,自引:1,他引:0  
根据某褐铁矿的矿石性质,采用一段磨矿、强磁选-反浮选工艺流程,对该矿石进行了选矿试验。试验结果表明,在磨矿细度-0.074 mm占60.0%,一次强磁粗选,强磁精矿再选,强磁尾矿再进行二次扫选,强磁精矿再选尾矿和强磁尾矿再选精矿合并进行反浮选,反浮选尾矿返回强磁尾矿再选的闭路工艺流程,可获得产率52.24%,品位54.04%,回收率67.03%的强磁精矿和产率47.76%,品位29.08%,回收率32.97%的最终尾矿。  相似文献   

11.
某超低品位钒钛磁铁矿选铁尾矿TiO_2品位极低,仅为3.33%,可回收金属矿物为钛铁矿,主要脉石矿物为橄榄石、辉石、长石和角闪石;品位低、橄榄石含量高是该矿石的两大特点,如何高效预富集及分选成为制约其开发利用的关键因素。针对选铁尾矿性质,采用强磁抛尾—强磁精矿再磨—摇床富集联合预选工艺可将TiO_2品位由3.33%提升至29.19%,作业回收率50.12%;预选精矿进一步浮选可获得TiO_2品位45.80%、浮选作业回收率为76.68%的钛精矿产品,对选铁尾矿TiO_2回收率达到38.43%,通过联合工艺使超低品位钒钛磁铁矿具备经济利用价值。  相似文献   

12.
随着鞍千入选矿石性质的变化,原有的工艺流程暴露出一些问题,如重选精矿品位低、浮选尾矿损失大等。针对鞍千半自磨—湿式预选的混磁铁精矿,进行了详细的工艺矿物学研究,并确定了搅拌磨细磨—磁选—反浮选短流程工艺。研究结果表明,混磁精矿中铁品位为42.91%,主要含铁矿物为磁铁矿和赤铁矿,其他金属矿物为少量黄铁矿,赤铁矿和磁铁矿与脉石矿物结合形成的连生体含量较多,且在细粒级中分布率均较高;在此基础上确定了搅拌磨细磨—弱磁选—弱磁尾矿强磁选—强磁精矿一次粗选一次精选三次扫选的工艺流程,弱磁精矿和反浮选精矿合并得到的综合精矿TFe品位67.68%、回收率91.88%,综合尾矿TFe品位为8.83%。本研究对于鞍山式赤铁矿石流程的优化具有重要的指导意义。  相似文献   

13.
针对齐大山铁矿选矿分厂反浮选工艺不能有效回收微细粒铁矿物,导致尾矿品位较高的现象,在实验室以石油磺酸钠作为捕收剂和絮凝剂,进行了齐大山铁矿选矿分厂磁选精矿剪切絮凝正浮选研究。结果表明:使磁选精矿发生剪切絮凝的适宜条件为磨矿细度-0.037 mm占85%,矿浆pH=3,石油磺酸钠用量5 kg/t,水玻璃用量300 g/t,搅拌强度2 200 r/min,剪切絮凝时间6 min。在此条件下将磁选精矿剪切絮凝后进行1粗3精1扫闭路浮选,获得了精矿铁品位为66.80%,回收率为95.93%,尾矿铁品位仅5.03%的较好指标。  相似文献   

14.
河北某普通磁铁矿TFe品位为65.25%,矿石性质结构简单,具有制备超纯铁精矿的潜力。研究采用多元素及X射线衍射图、物相分析等方法对原矿进行了工艺矿物学研究,并在此基础上对其进行了提纯试验。结果表明,原矿经过弱磁选粗选后,在磨矿细度-0.038 mm占85%的条件下经弱磁选再选、磁选柱精选得到TFe品位为71.31%的磁选柱精矿以及TFe品位68.12%、产率为3.32%的磁选柱铁尾矿。通过进一步考察药剂制度和工艺流程对铁矿精矿品位、回收率等选别指标的影响,确定了合适的药剂制度。而后磁选柱精矿经1粗3精反浮选降硅工艺试验流程,最终可获得含TFe品位71.95%、综合回收率为80.50%的超纯铁精矿,浮选尾矿TFe品位68.17%符合普通铁精矿标准。通过对选别产品进行试样化学成分分析及残余药剂测定,进一步证明该工艺流程可以实现超纯铁精矿的制备。该工艺在抛尾率为10.79%条件下,将原矿样的73.04%转化为超纯铁精矿,对这一地区超纯铁精矿的制备具有重要的指导意义,也为国内其他地区磁铁矿制备超纯铁精矿的研究提供了一定的参考价值。  相似文献   

15.
某金矿矿泥单独浮选试验研究   总被引:1,自引:1,他引:0  
董洁  曹亦俊  刘洋  黄根 《金属矿山》2011,40(6):93-96
山东某金矿选厂在破碎段经洗矿、分级、浓缩脱出的矿泥含金量与原矿相当,但粒度过细,进入浮选系统后会恶化浮选过程。为此,分别采用浮选机和旋流-静态微泡浮选柱对该矿泥进行了单独浮选试验。试验结果表明,矿泥经浮选机1粗1精2扫选别,可获得平均金品位为90.73 g/t、平均金回收率为77.91%的合格精矿,经旋流-静态微泡浮选柱1粗1精选别,可获得平均金品位为98.43 g/t、平均金回收率为87.93%的合格精矿,旋流-静态微泡浮选柱不仅选别指标明显优于浮选机,而且可比浮选机减少2次扫选作业。  相似文献   

16.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

17.
承德某钒钛磁铁矿选铁尾矿中TiO2品位2.60%,TFe品位7.73%。针对该尾矿中钛铁矿资源尚未回收利用的问题现状,根据尾矿性质,本研究采用“磁重联合阶磨阶选”预富集工艺;以及采用硫酸、EM-B作为调整剂,EM-3作为捕收剂,经过一次粗选、一次扫选、五次精选的钛浮选流程,最终获得了TiO2品位46.23%、浮选作业回收率83.25%、相对选铁尾矿回收率42.03%的钛铁矿精矿产品,实现了该尾矿资源化综合回收利用,为此类矿山提供合理可行的资源利用技术方案。   相似文献   

18.
某复杂铜铅锌多金属矿选矿试验   总被引:1,自引:0,他引:1  
黄建芬 《金属矿山》2012,41(11):76-79
针对某复杂铜铅锌多金属矿的性质特点,采用弱磁选脱硫-铜铅混浮-混合精矿铜铅分离-混浮尾矿选锌的原则流程对该矿石进行选矿试验研究。在矿石磨矿细度为-0.074 mm占90%的情况下,采用1次弱磁选选硫、1粗2精2扫铜铅混浮、1粗2精1扫铜铅分离、1粗3精2扫选锌、中矿顺序返回流程处理该矿石,最终获得了铜品位为24.79%、铜回收率为55.78%的铜精矿,铅品位为51.34%、铅回收率为83.55%的铅精矿,锌品位为45.63%、锌回收率为62.71%的锌精矿,硫品位为35.12%、硫回收率为80.08%的硫精矿。铜精矿含银229.53 g/t,铅精矿含银196.20 g/t,铜、铅精矿中银的总回收率为50.29%。  相似文献   

19.
针对浮选柱对微细粒矿物浮选和提高精矿品位方面的优越性,结合大红山铜矿浮选工艺流程的简单灵活性,在大红山铜矿二选厂采用从生产流程中分流出一部分矿浆进行CPT浮选柱试验,结合精选尾矿MLA测试结果研究浮选粗精矿再磨和不再磨两种情况下取得的技术经济指标.与浮选机相比,获得粗精矿柱浮选不再磨流程精矿铜品位提高了 1.00个百分...  相似文献   

20.
鲁南矿业有限公司铁矿石系鞍山式贫磁铁矿,现场生产反浮选尾矿品位达27%,以磁铁矿形式存在的铁占76.54%,存在回收的可能性。采用磁选-反浮选工艺对现场浮选尾矿进行再选试验,结果表明:在再磨细度为-0.043 mm占90%、磁场强度为110 kA/m时,可以得到铁品位为44.36%的磁选精矿,将其作为反浮选的给矿,在浮选温度为35℃,粗选NaOH用量为800 g/t、淀粉为700 g/t、CaO为300 g/t、MD-27为300 g/t、矿浆浓度为40%时,经1粗1精2扫闭路反浮选,得到的精矿铁品位为62.39%、回收率为49.36%,满足了公司对铁精矿品质的要求,可以作为现场流程改造的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号