首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study we aimed to examine a role for interleukin 6 (IL-6) and its receptor (IL-6R) in peripheral nerve regeneration in vivo. We first observed that cultured mouse embryonic dorsal root ganglia exhibited dramatic neurite extension by simultaneous addition of IL-6 and soluble IL-6R (sIL-6R), a complex that is known to interact with and activate a signal transducing receptor component, gp130. After injury in the hypoglossal nerve in adult mice by ligation, immunoreactivity to IL-6 was upregulated in Schwann cells at the lesional site as well as in the cell bodies of hypoglossal neurons in the brain stem. In the latter, upregulation of the immunoreactivity to IL-6R was also observed. Regeneration of axotomized hypoglossal nerve in vivo was significantly retarded by the administration of anti-IL-6R antibody. Surprisingly, accelerated regeneration of the axotomized nerve was achieved in transgenic mice constitutively expressing both IL-6 and IL-6R, as compared with nontransgenic controls. These results suggest that the IL-6 signal may play an important role in nerve regeneration after trauma in vivo.  相似文献   

2.
3.
The helical cytokine interleukin (IL) 6 and its specific binding subunit IL-6R alpha form a 1:1 complex which, by promoting homodimerization of the signalling subunit gp130 on the surface of target cells, triggers intracellular responses. We expressed differently tagged forms of gp130 and used them in solution-phase binding assays to show that the soluble extracellular domains of gp130 undergo dimerization in the absence of membranes. In vitro receptor assembly reactions were also performed in the presence of two sets of IL-6 variants carrying amino acid substitutions in two distinct areas of the cytokine surface (site 2, comprising exposed residues in the A and C helices, and site 3, in the terminal part of the CD loop). The binding affinity to IL-6R alpha of these variants is normal but their biological activity is poor or absent. We demonstrate here that both the site 2 and site 3 IL-6 variants complexed with IL-6R alpha bind a single gp130 molecule but are unable to dimerize it, whereas the combined site 2/3 variants lose the ability to interact with gp130. The binding properties of these variants in vitro, and the result of using a neutralizing monoclonal antibody directed against site 3, lead to the conclusion that gp130 dimer is formed through direct binding at two independent and differently oriented sites on IL-6. Immunoprecipitation experiments further reveal that the fully assembled receptor complex is composed of two IL-6, two IL-6R alpha and two gp130 molecules. We propose here a model representing the IL-6 receptor complex as hexameric, which might be common to other helical cytokines.  相似文献   

4.
Signals propagated via the gp130 subunit of the interleukin-6 (IL-6)-type cytokine receptors mediate, among various cellular responses, proliferation of hematopoietic cells and induction of acute-phase plasma protein (APP) genes in hepatic cells. Hematopoietic growth control by gp130 is critically dependent on activation of both STAT3 and protein tyrosine phosphatase 2 (SHP-2). To investigate whether induction of APP genes has a similar requirement for SHP-2, we constructed two chimeric receptors, G-gp130 and G-gp130(Y2F), consisting of the transmembrane and cytoplasmic domains of gp130 harboring either a wild-type or a mutated SHP-2 binding site, respectively, fused to the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor. Rat hepatoma H-35 cells stably expressing the chimeric receptors were generated by retroviral transduction. Both chimeric receptors transmitted a G-CSF-induced signal characteristic of that triggered by IL-6 through the endogenous gp130 receptor; i.e., both activated the appropriate JAK, induced DNA binding activity by STAT1 and STAT3, and up-regulated expression of the target APP genes, those for alpha-fibrinogen and haptoglobin. Notwithstanding these similarities in the patterns of signaling responses elicited, mutation of the SHP-2 interaction site in G-gp130(Y2F) abrogated ligand-activated receptor recruitment of SHP-2 as expected. Moreover, the tyrosine phosphorylation state of the chimeric receptor, the associated JAK activity, and the induced DNA binding activity of STAT1 and STAT3 were maintained at elevated levels and for an extended period of time in G-gp130(Y2F)-expressing cells following G-CSF treatment compared to that in cells displaying the G-gp130 receptor. H-35 cells ectopically expressing G-gp130(Y2F) were also found to display an enhanced sensitivity to G-CSF and a higher level of induction of APP genes. Overexpression of the enzymatically inactive SHP-2 enhanced the signaling by the wild-type but not by the Y2F mutant G-gp130 receptor. These results indicate that gp130 signaling for APP gene induction in hepatic cells differs qualitatively from that controlling the proliferative response in hematopoietic cells in not being strictly dependent on SHP-2. The data further suggest that SHP-2 functions normally to attenuate gp130-mediated signaling in hepatic (and, perhaps, other) cells by moderating JAK action.  相似文献   

5.
6.
As a tool to investigate physiological and pathological roles of cytokines, gene manipulation techniques have been applied to make mouse models having mutations in cytokine receptor genes. Functional pleiotropy and redundancy are two major characteristic features of cytokines. The latter feature is in part explained by the shared usage of a signal-transducing receptor component by several cytokine receptor complexes. In this article, studies with the help of gene manipulation techniques on a group of cytokine receptor complexes sharing the signal transducer, gp130, are reviewed. To investigate the in vivo roles of gp130, mice deficient for gp130 or having constitutively activated gp130 were made. Transgenic mice expressing a dominant-negative form of gp130 were produced as well. Observation from these mouse models and that from mice deficient for other gp130-related receptors and ligans are also reviewed in this article.  相似文献   

7.
8.
The coordination and regulation of immune responses are primarily mediated by cytokines that bind to specific cell surface receptors. Glycoprotein 130 (gp130) belongs to the family of class I cytokine receptors and is the common signal-transducing receptor subunit shared by the so-called IL-6 type cytokines (IL-6, IL-11, ciliary neurotrophic factor, leukemia inhibitory factor, oncostatin M, and cardiotrophin-1). The inflammatory cytokines IL-6 and IL-11 induce gp130 homodimerization after binding to their specific alpha receptors, which leads to the activation of the Janus kinase/STAT signal transduction pathway. A molecular model of IL-6/IL-6R/gp130, which is based on the structure of the growth hormone/growth hormone receptor complex, allowed the selection of several amino acids located in the cytokine-binding module of gp130 for mutagenesis. The mutants were analyzed with regard to IL-6- or IL-11-induced STAT activation and ligand binding. It was found that Y190 and F191 are essential for the interaction of gp130 with IL-6 as well as IL-11, suggesting a common mode of recognition of helical cytokines by class I cytokine receptors. Furthermore, the requirement of the gp130 N-terminal Ig-like domain for ligand binding and signal transduction was demonstrated by the use of deletion mutants. Thus, besides the observed analogy to the growth hormone/growth hormone receptor complex, there is a substantial difference in the mechanism of receptor engagement by cytokines that signal via gp130.  相似文献   

9.
The pleiotrophic but overlapping functions of the cytokine family that includes interleukin (IL)-6, IL-11, leukemia inhibitory factor, oncostatin M, ciliary neurotrophic factor, and cardiotrophin 1 are mediated by the cytokine receptor subunit gp130 as the common signal transducer. Although mice lacking individual members of this family display only mild phenotypes, animals lacking gp130 are not viable. To assess the collective role of this cytokine family, we inducibly inactivated gp130 via Cre-loxP-mediated recombination in vivo. Such conditional mutant mice exhibited neurological, cardiac, hematopoietic, immunological, hepatic, and pulmonary defects, demonstrating the widespread importance of gp130-dependent cytokines.  相似文献   

10.
The receptor gp130 is utilized by cytokines including interleukin 6, leukemia inhibitory factor, oncostatin M, cilary neurotrophic factor and cardiotrophin. It is essential for myocardial development and haematopoiesis during embryogenesis, and its role as a shared signal transducer among different cytokines explains their overlapping biological functions. Although gp130 contains a cytokine-binding homology region (CHR) analogous to the extracellular growth hormone receptor, the complexes that utilize gp130 are not simple dimerizations of receptors around a single cytokine but involve receptor interactions with additional sites on the ligand resulting in higher order complexes. Analysis by surface plasmon resonance of the binding of the immunoglobulin-like and CHR domains of the extracellular portion of gp130 to mutants of the cytokine oncostatin M reveal that the CHR forms the main binding site for oncostatin M by a classical site II interaction, but in addition a second interaction occurs involving the receptor's immunoglobulin-like domain and the cytokine's site III at the N-terminus of the D helix. The implications for complex formation are discussed.  相似文献   

11.
Osteoclasts are present in gp130-deficient mice   总被引:1,自引:0,他引:1  
Interleukin (IL)-6, IL-11, leukemia inhibitory factor, and oncostatin M similarly induce osteoclast formation in cocultures of osteoblastic cells and bone marrow cells. These cytokines share a common signal transducer, gp130, which forms a receptor complex with the specific receptor for each cytokine. To investigate the role of gp130 in osteoclast development, we examined bone tissues in gp130-deficient and wild-type newborn mice of the ICR background. Soft x-ray radiographs and microfocus x-ray computed tomographs revealed that bone marrow cavities were present in tibiae and radii of both wild-type and gp130-deficient mice. Microfocus x-ray computed tomography and histological examination demonstrated a decrease in the amount of trabeculae at the metaphysial region in tibiae and radii of the gp130-deficient mice compared with the wild-type mice. The number ofosteoclasts in gp130-deficient mice was about double that in the wild-type mice. There were no apparent differences in the distributions of alkaline phosphatase-positive osteoblasts and the osteoid surface on the trabecular bone at the metaphysial region between the wild-type and gp130-deficient mice. The volume of mineralized trabecular bones was also decreased at mandibulae, accompanied by the increased number of osteoclasts in gp130-deficient mice compared with the wild-type and heterozygous mice. These results suggest that the formation of osteoclasts is not solely dependent on gp130 signaling, at least during fetal development. The osteoclastic bone resorption in gp130-deficient mice may be caused by the functional redundancy of bone-resorbing hormones and cytokines other than those of the IL-6 family.  相似文献   

12.
13.
The evolutionary expansion of the haematopoietic cytokines and their receptors is characterized by the duplication of both cytokines and receptors. A systematic analysis of primary sequence homology indicates that receptors for gp130-associated cytokines group into signal transducing and non-signal transducing receptors. This observation is consistent with the evolution of the interleukins 6, 11 and 12, granulocyte colony stimulating factor (G-CSF), leukemia inhibitory factor (LIF), oncostatin M, and the ciliary neurotrophic factor complexes from a common ancestral complex which included a homodimer of gp130-like signalling receptors and an interleukin 6 receptor-like non-signalling receptor. Alterations in the components of the complex are proposed to have arisen by receptor duplication and divergence to allow signal transduction via a LIF receptor/gp130 heterodimer, and loss of the non-signalling receptor component in the G-CSF and the LIF lineage. The short-chain haematopoietins and their receptors do not group clearly, although interleukins 4 and 13 grouped together, as did 2 and 10. Internal duplication of the ligand-binding domain appears to have occurred independently in three separate lineages. These observations have implications for the classification of cytokines and receptors, and for the modelling by homology of their structures and interactions.  相似文献   

14.
15.
The gp130 cytokines leukemia inhibitory factor and interleukin-6 are neuroactive cytokines associated with peripheral nerve injury. Here we show that exogenous administration of these factors selectively regulates neuropeptide phenotype in intact sensory neurons in a manner consistent with their role as injury-induced factors. Intraneural injection of leukemia inhibitory factor into the intact sciatic nerve of adult rats induces a significant increase in the percentage of neuronal profiles immunoreactive for galanin in the L4 and L5 dorsal root ganglia without altering the percentage profiles immunoreactive for vasoactive intestinal polypeptide or neuropeptide Y. Galanin-immunoreactivity was predominantly confined to those neurons which retrogradely transported and accumulated leukemia inhibitory factor. The up-regulation of galanin-immunoreactivity observed in L4 and L5 dorsal root ganglia following unilateral axotomy of the sciatic nerve was significantly reduced following continuous treatment for two weeks with a monoclonal antibody against the gp130 receptor motif. Intraneural injection of interleukin-6 into the intact sciatic nerve also significantly increased the percentage of neuronal profiles which displayed galanin-immunoreactivity but not vasoactive intestinal polypeptide or neuropeptide Y-immunoreactivity. Our results indicate that cytokines which interact with the gp130 receptor at the site of peripheral nerve injury contribute to the cell body response to axotomy. Changes in the levels of such cytokines however are insufficient to account for the complete repertoire of neuropeptide phenotypic changes associated with peripheral nerve injury.  相似文献   

16.
17.
SIRPs (signal-regulatory proteins) are a family of transmembrane glycoproteins that were identified by their association with the Src homology 2 domain-containing protein-tyrosine phosphatase SHP-2 in response to insulin. Here we examine whether SIRPalpha and SHP-2 are signaling molecules for the receptors for growth hormone (GH), leukemia inhibitory factor (LIF), or interferon-gamma (IFNgamma), cytokine receptor superfamily members that bind to and activate Janus kinase 2 (JAK2). In 3T3-F442A fibroblasts, GH rapidly stimulates tyrosyl phosphorylation of both SIRPalpha and SHP-2 and enhances association of SHP-2 with SIRPalpha. Consistent with JAK2 binding and phosphorylating SIRPalpha in response to GH, co-expression of SIRPalpha and JAK2 in COS cells results in tyrosyl phosphorylation of SIRPalpha and JAK2 association with SIRPalpha. LIF does not stimulate tyrosyl phosphorylation of SIRPalpha but stimulates greater tyrosyl phosphorylation of SHP-2 than GH. Additionally, LIF enhances association of SHP-2 with the gp130 subunit of the LIF receptor signaling complex. IFNgamma, which stimulates JAK2 to a greater extent than LIF, is ineffective at stimulating tyrosyl phosphorylation of SIRPalpha or SHP-2. These results suggest that SIRPalpha is a signaling molecule for GH but not for LIF or IFNgamma. Differential phosphorylation of SIRPalpha and SHP-2 may contribute to the distinct physiological effects of these ligands.  相似文献   

18.
In early HIV disease, immunodeficiency is characterized by the inability of CD4+ T cells to produce a critical cytokine, IL-2, and to express the receptor for IL-2 (IL-2R) in response to antigenic or mitogenic stimulation. The shared common gamma-chain (gamma(c)) of IL-2R and its associated Janus kinase, JAK3, are indispensable for normal T cell function. Here, we show that the inhibition of IL-2R expression and proliferation induced by ligation of CD4 by HIV envelope glycoprotein, gp120, is correlated with inhibition of expression and activation of JAK3. Stimulation through the gamma(c)-related cytokine receptors restores JAK3 expression and activation and rescues CD4-mediated T cell unresponsiveness. Collectively, these data argue that inhibition of JAK3 expression and activation may, in part, explain the T cell dysfunction seen in early HIV disease. In addition, rescue from gp120-mediated T cell unresponsiveness by activation of JAK3 suggests a novel therapeutic approach for enhancing immune function in HIV disease.  相似文献   

19.
Leukaemia inhibitory factor (LIF) is a cytokine that displays multiple activities in various tissues and is essential for blastocyst implantation in mice. In the human uterus, LIF is expressed in endometrial tissue and the decidua. To elucidate the role it plays, the mRNA levels for two LIF receptor (R) subunits, LIF-R and gp130, were examined in human endometrium, placenta and decidua by Northern blot hybridization. The expression of LIF-R gene was detected in the chorionic villus during the first trimester, in term placenta, and at lower levels in the decidua. The expression of LIF-R gene was not detectable in non-pregnant endometrium. The expression of the gp130 gene was detected in all tissues examined. During pregnancy, there was no significant change in the mRNA concentration of LIF-R in the placenta, while that of gp130 increased after the second trimester. The human choriocarcinoma cell line, BeWo, was found to express LIF-R and gp130. LIF inhibited forskolin-induced human chorionic gonadotrophin (HCG)-beta production by BeWo in a dose-dependent manner, and it ameliorated forskolin-induced growth suppression. These findings suggest that LIF plays a regulatory role in trophoblast growth and differentiation during pregnancy in human placenta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号