共查询到17条相似文献,搜索用时 63 毫秒
1.
ZK60镁合金热变形过程中的动态再结晶动力学 总被引:2,自引:0,他引:2
采用Gleeble-1500热模拟机对ZK60镁合金在温度为200~400℃、应变速率为0.001~10s-1、最大变形量为60%的条件下进行恒应变速率高温压缩实验,研究高温变形过程中合金的动态再结晶行为;采用EM模型描述合金的动态回复曲线,以此为基础,得出ZK60合金热压缩过程中的动态再结晶动力学Avrami方程.利用有限元模拟合金热压缩过程中的动态再结晶.结果表明ZK60合金热压缩过程中由于存在动态再结晶的软化作用,流变应力达到峰值后逐渐减小,并最终达到稳态;随着变形量的增加和变形温度的升高,动态再结晶体积分数增加,合金变形更加均匀;随着应变速率的增加,动态再结晶分数有所减小,且.变形也更不均匀. 相似文献
2.
ZK60镁合金热压缩变形流变应力行为与预测 总被引:4,自引:0,他引:4
在变形温度为523---673 K, 应变速率为0.001---1 s-1的条件下, 采用Gleeble--1500热模拟试验机对ZK60镁合金的热变形行为进行了研究. 结果表明, ZK60镁合金流变应力随变形温度升高和应变速率的降低而减小. 其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段, 但在温度较高和应变速率较小时, 过渡阶段不很明显. 建立了一个包含应变的流变应力预测模型, 模型中的9个独立参数可以通过非线性最小二乘法拟合求得, 预测的流变应力曲线与实验结果吻合较好. 相似文献
3.
4.
在变形温度为200~400℃、应变速率为0.001~1s-1条件下,对ZK60镁合金进行热压缩实验,建立一个单隐层前馈误差反向传播人工神经网络模型,研究该镁合金的流变行为。模型的输入参数分别为变形温度、应变速率和应变,输出为流变应力,中间隐含层包含23个神经元,并采用Levenberg-Marquardt算法对此网络模型进行训练。结果表明:ZK60镁合金的流变应力随变形温度升高和应变速率降低而减小;其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段,但在较高温度和较低应变速率时,过渡阶段不很明显;所建神经网络模型可以很好地描述ZK60镁合金的流变应力,其预测值与实验值吻合很好;利用该模型预测的变形温度和应变速率对流变应力的影响结果与一般热加工理论所得结果一致。 相似文献
5.
在250~400°C的温度范围和0.1-50 s-1的应变速率范围内对ZK60合金进行压缩变形,对其流变行为和显微组织进行研究。结果表明,在低应变速率(0.1~1 s-1)下压缩变形时,再结晶主要发生在初始晶界上;在高应变速率(10~50 s-1)下压缩变形时,再结晶同时在初始晶界和孪晶上发生。合金在应变速率10~50 s-1和温度250~350°C的变形条件下获得均匀、细小的再结晶组织。因此,合金的最佳热加工工艺范围为应变速率10~50 s-1、变形温度250~350°C。高应变速率压缩变形条件下的孪生诱发动态再结晶过程分三步,首先,高位错密度孪晶分割初始晶粒;然后,孪晶内的位错发生重排形成亚晶;最后,随着应变的增加而形成再结晶晶粒。 相似文献
6.
ZK60及ZK60 (0.9Y)镁合金高温变形行为的热模拟研究 总被引:2,自引:0,他引:2
采用Gleeble-1500热模拟试验机进行压缩试验,研究ZK60和ZK60(0.9Y)镁合金在变形温度为473~723K、应变速率为0.001~1s-1范围内的变形行为,计算了应力指数和变形激活能,并采用Zener-Hollomon参数法构建了合金高温塑性变形的本构关系。结果表明:在试验变形条件范围内,合金的真应力-真应变曲线为动态再结晶型;在573~723K范围内,应力指数随着变形温度的升高而增加,变形激活能随着变形温度和应变速率的改变而变化。对比ZK60合金,ZK60(0.9Y)合金的变形激活能降低了30%,且材料常数n和A值均降低。 相似文献
7.
采用Gleeble-3800热模拟试验机热模拟压缩试验研究了GH2150合金在不同试验参数下的热变形行为和再结晶演变规律。结果表明,在1000~1200℃范围内,应变速率为0.1~5 s-1,变形量分别为30%、50%、70%条件下,合金峰值应力随变形温度升高而降低,随应变速率降低而降低。结合真应力-真应变曲线及阿伦尼乌斯公式得到了GH2150合金的热变形本构方程,采用该方程得到的计算结果与实际结果的平均相对误差为4.36%,相关系数R=0.992,具有较好的吻合性。绘制GH2150合金动态再结晶图发现大变形量有利于提高再结晶分数,合金再结晶行为在50%变形量下主要受变形温度影响,在70%变形量下采用低应变速率更有利于再结晶发生。 相似文献
8.
在Gleeble 1500D热模拟试验机上,采用高温等温压缩试验对Cu-Ni-Si-P-Cr合金在应变速率为0.01~5 s 1、变形温度为600~800℃条件下的流变应力行为进行研究,利用光学显微镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Ni-Si-P-Cr合金在热变形过程中发生了动态再结晶,且根据变形温度的不同,真应力—真应变曲线的特征有所不同。流变应力随变形温度升高而降低,随应变速率提高而增大。从流变应力、应变速率和温度的相关性得出该合金热压缩变形时的热变形激活能Q和本构方程。 相似文献
9.
在250-400℃的温度范围和0.1-50 s^-1的应变速率范围内对ZK60合金进行压缩变形,对其流变行为和显微组织进行研究。结果表明,在低应变速率(0.1-1 s^-1)下压缩变形时,再结晶主要发生在初始晶界上;在高应变速率(10-50 s^-1)下压缩变形时,再结晶同时在初始晶界和孪晶上发生。合金在应变速率10-50 s^-1和温度250-350℃的变形条件下获得均匀、细小的再结晶组织。因此,合金的最佳热加工工艺范围为应变速率10-50 s^-1、变形温度250-350℃。高应变速率压缩变形条件下的孪生诱发动态再结晶过程分三步,首先,高位错密度孪晶分割初始晶粒;然后,孪晶内的位错发生重排形成亚晶;最后,随着应变的增加而形成再结晶晶粒。 相似文献
10.
利用Gleeble-3800热模拟试验机研究了一种新型超高强度不锈钢在变形温度850~1150 ℃,应变速率0.01~10 s-1条件下的热压缩变形行为,建立了钢的热变形方程及动态再结晶晶粒的尺寸模型。结果表明,变形过程中,变形温度降低和应变速率增加都会使钢的高温流变应力增加。应变速率相同时,随着变形温度的升高,动态再结晶程度逐渐增加;而当变形温度相同时,随着应变速率的降低,动态再结晶晶粒发生长大。试验钢的变形激活能为452.02 kJ/mol,热变形方程为:=6.93309×1016[sinh(0.00467σ)] 7.2154exp(),动态再结晶临界应变εc与形变温度和应变速率的关系为:εc=8.89×10-3(exp())0.07328,动态再结晶晶粒尺寸模型为DDRX=947.28×Z-0.123。 相似文献
11.
Dynamic recrystallization and texture development during hot deformation of magnesium alloy AZ31 总被引:2,自引:1,他引:1
The dynamic recrystallization(DRX) and texture development, taking place during hot deformation of magnesium alloy AZ31 with a strong wire texture, were studied in compression at 673 K (0.73 Tm). Two kinds of samples were machined parallelly to the extruded and transverse directions of Mg alloy rods. New fine grains are evolved at original grain boundaries corrugated at low strains and develop rapidly in the medium range of strain, finally leading to a roughly full evolution of equiaxial fine grains. Kink bands are evolved at grain boundaries corrugated and also frequently in grain interiors at low strains. The boundary misorientations of kink band increase rapidly with increasing strain and approach a saturation value in high strain. The average size of the regions fragmented by kink band is almost the same as that of new grains evolved in high strain. These characteristics of new grain evolution process are not changed by the orientation of the samples, while the flow behaviors clearly depend on it. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction, i.e. continuous dynamic recrystallization(DRX). The latter is discussed by comparing with conventional, i.e. discontinuous DRX. 相似文献
12.
13.
The deformation behavior of squeeze cast ZK60 magnesium alloy was investigated by compressive tests conducted at temperatures of 250-450 ℃ and strain rates of 0.001-10 s^-1 with Gleeble--1500D thermal simulator system. The hot deformation behavior of squeeze cast ZK60 magnesium alloy was characterized using processing map developed on the basis of the dynamic materials model. The processing map gives safe "processing windows" in which the processes of dynamic recovery and dynamic recrystallization occur. It reveals that the dynamic recrystallization domain occurs at 375 ℃ and strain rate of 0.001 s^-1, and its power dissipation efficiency approximately corresponds to 36%, which should be considered the optimum parameters for hot working of squeeze cast ZK60 magnesium alloy. The variation of the instability parameter ξ(ε) with temperature and strain rate constitutes an instability map, which is used for delineating the region of flow instability. The material exhibits flow instability which should be avoided in mechanical processing. 相似文献
14.
Al—2Mg合金的动态再结晶 总被引:10,自引:0,他引:10
单相Al2 Mg 合金在300 ~530 ℃ 以0 .069 ~1 .587s- 1 形变速率扭转到真应变5 .5 , 随后立即水冷。采用真应力- 真应变曲线, 偏振光金相和透射电子显微镜研究该合金热扭转过程的动态复原机制。试验证实, 该合金热扭转过程中发生了动态再结晶, 但在一定的Z 参数范围内发生, Z 参数过大或过小, 只发生动态回复。显微组织分析并没有发现层错的存在。发生动态再结晶的原因是动态回复被抑制, 即在较高形变温度下, 加大形变速率, 而在较低形变温度下, 降低形变速率。 相似文献
15.
采用光学显微镜、SEM/EBSD和组织定量分析技术研究AZ61镁合金在623 K、3×10-5~3×10-1 s-1下单向压缩时变形和动态再结晶行为。结果表明:AZ61镁合金的流变应力和动态再结晶行为强烈地受到应变速率的影响;随着应变速率的提高,稳态流变应力对应变速率的敏感性逐渐减弱,而峰值应力对应变速率的敏感性却呈先减弱后又显著增强的趋势。提高应变速率可加快动态再结晶进程,但高速变形初期产生更多的粗大{1012}孪晶,不利于完全再结晶而导致稳态时的再结晶体积分数反而较低;在中低应变速率下动态再结晶以晶界弓出形核为主,而在高应变速率下则主要通过孪晶分割来进行;由应变速率引起变形机制的变化是导致不同动态再结晶行为的原因。 相似文献
16.
17.
Continuous dynamic recrystallization and discontinuous dynamic recrystallization in 99.99% polycrystalline aluminum during hot compression 总被引:2,自引:0,他引:2
The dynamic restoration behavior of 99.99% polycrystalline aluminum was investigated. The deformation was carried out by compression test at 533 - 773 K and initial strain rate of 0. 002 - 2 s^-1 to a true strain of 1.0 followed by water quench. Polarized optical microscopy and transmission electron microscopy were applied to observe the deformation microstructure. It‘s found that discontinuous dynamic recrystallization, which is commonly observed in lower stacking fault energy metals or ultra-high purity aluminum(≥99.999%), occurs when Zenner-Hollomon parameter(Z parameter) is low, but the true stress strain curve doesn‘t accompany stress oscillation.Continuous dynamic recrystallization occurs when Z parameter is intermediate, and only dynamic recovery takes place if Z parameter is high. 相似文献