首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation and characterization of factice by vulcanization of oil extracted fromPutranjiva roxburghii, a fairly abundant plant of the tropical Indian subcontinent, is presented. This information serves as a processing aid for substituting commercially available factices. Mechanical and thermal studies of this new type of factice, blended with rubber, showed higher thermal stability and improved processing characteristics during extrusion and calendering operations compared to rubber without factice.  相似文献   

2.
The factice gelation time for meadowfoam oil, along with hardness, color, acetone extract and free sulfur content of the gelled products were compared with gelation time and product properties of factice prepared from seed oils of rapeseed, crambe, soybean, castor,Lesquerella and jojoba. The effect of additives, specifically zinc oxide, magnesium oxide, triethylamine, dicyclohexylamine, 2-mercaptobenzothiazole and iodine, was also investigated. Both white and brown factices could be prepared from meadowfoam oil and their properties were equivalent to or better than those from high erucic acid rapeseed oil used commercially for the highest quality factice. Presented at the Association for the Advancement of Industrial Crops 1st Annual Conference in Peoria, Illinois, October 2–6, 1989.  相似文献   

3.
Deoxygenation reaction of vegetable oils over a carbon-supported metal catalyst was studied as a suitable reaction for production of diesel-fuel-like hydrocarbons. Stearic acid, ethyl stearate, and tristearine have been used as model compounds. Catalytic treatment of all the three reactants resulted in production of n-heptadecane as the main product with high selectivity.  相似文献   

4.
The13C nuclear magnetic resonance spectra ofVernonia galamensis seed oil and of epoxidized palm super olein, soybean oil and linseed oil have been recorded and interpreted. The chemical shifts of the major signals are assigned and semi-quantitative results are derived. The spectroscopic procedure provides a useful method of analyzing oils that contain epoxy acids. The epoxide function differs from a double bond in its influence on the chemical shifts of nearby carbon atoms.  相似文献   

5.
Fast formation of high-purity methyl esters from vegetable oils   总被引:4,自引:12,他引:4  
Experiments have confirmed that the base-catalyzed methanolysis of vegetable oils occurs much slower than butanolysis because of the two liquid phases initially present in the former reaction. For the same reason, second-order kinetics are not followed. The use of a cosolvent such as tetrahydrofuran or methyl tertiary butyl ether speeds up methanolysis considerably. However, like one-phase butanolysis, one-phase methanolysis initially exhibits a rapid formation of ester, but then slows drastically. Experiments show that the half-life of the hydroxide catalyst is too long to explain the sudden slowing of the reaction. Similarly, lower rate constants for the methylation of the mono- and diglycerides are not a reasonable explanation. Instead the cause has been identified as the fall in polarity which results from the mixing of the nonpolar oil with the methanol. This lowers the effectiveness of both hydroxide and alkoxide catalysts. Increasing the methanol/oil molar ratio to 27 in the one-phase system raises the polarity such that the methyl ester content of the ester product exceeds 99.4 wt% in 7 min. This has obvious implications for the size of new methyl ester plants as well as the capacity of existing facilities.  相似文献   

6.
Fast formation of high-purity methyl esters from vegetable oils   总被引:4,自引:0,他引:4  
Experiments have confirmed that the base-catalyzed methanolysis of vegetable oils occurs much slower than butanolysis because of the two liquid phases initially present in the former reaction. For the same reason, second-order kinetics are not followed. The use of a cosolvent such as tetrahydrofuran or methyl tertiary butyl ether speeds up methanolysis considerably. However, like one-phase butanolysis, one-phase methanolysis initially exhibits a rapid formation of ester, but then slows drastically. Experiments show that the half-life of the hydroxide catalyst is too long to explain the sudden slowing of the reaction. Similarly, lower rate constants for the methylation of the mono- and diglycerides are not a reasonable explanation. Instead the cause has been identified as the fall in polarity which results from the mixing of the nonpolar oil with the methanol. This lowers the effectiveness of both hydroxide and alkoxide catalysts. Increasing the methanol/oil molar ratio to 27 in the one-phase system raises the polarity such that the methyl ester content of the ester product exceeds 99.4 wt% in 7 min. This has obvious implications for the size of new methyl ester plants as well as the capacity of existing facilities.  相似文献   

7.
The ability of immobilized lipases IM60 fromMucor miehei and SP435 fromCandida antarctica to modify the fatty acid composition of selected vegetable oils by incorporation of n−3 polyunsaturated fatty acids into the vegetable oils was studied. The transesterification was carried out in organic solvent with free acid and ethyl esters of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as acyl donors. With free EPA as acyl donor, IM60 gave higher incorporation of EPA than SP435. However, when ethyl esters of EPA and DHA were the acyl donors, SP435 gave higher incorporation of EPA and DHA than IM60. When IM60 and free acid were used, the addition of 5 μL water increased EPA incorporation into soybean oil by 4.9%. With ethyl ester of EPA as acyl donor, addition of 2 μL water increased EPA incorporation by 3.9%. For SP435, addition of water up to 2μL resulted in increased EPA incorporation, but the incorporation declined when the added water exceeded this amount. The addition of water increased the EPA incorporation into Trisun 90 after 24 h reaction but not the reaction rate at early stages of the reaction.  相似文献   

8.
Flow properties of vegetable oil-diesel fuel blends   总被引:1,自引:0,他引:1  
Z. Franco 《Fuel》2011,90(2):838-843
Straight vegetable oils provide cleaner burning and renewable alternatives to diesel fuel, but their inherently high viscosity compared to petroleum based diesel is undesirable for diesel engines. Lowering the viscosity can be simply achieved by either increasing the temperature of the oil or by blending it with diesel fuel, or both. In this work the rheological properties of diesel fuel and vegetable oil mixtures at different compositions were studied as a function of temperature to determine a viscosity-temperature-composition relationship for use in design and optimization of heating and fuel injection systems used in diesel engines. The vegetable oils used were corn, canola, olive, peanut, soybean and sunflower oils which are of commercial food grade. All the vegetable oils and their blends with No. 2 diesel fuel showed time-independent Newtonian behaviour within the test temperatures between 20 °C and 80 °C. Viscosities of the pure oils and diesel were satisfactorily correlated with temperature by means of the Arrhenius typed relationship. The Arrhenius blending rule was found applicable to describing the composition dependence of viscosity all vegetable oils-diesel blends at a fixed temperature. These relations were combined to develop a simple mixture viscosity model to predict the viscosity of the vegetable oil-diesel blends as functions of temperature and composition based on properties of the pure components.  相似文献   

9.
The increasing qualitative requirements of the modern diesel fuels can be satisfied by applying environmental friendly blending components and additive-packages having high performance level.The aim of our experimental work was to produce multifunctional additives based on rapeseed oil methyl ester by applying radical initiation. This process is more environmental friendly and energy economic respect to the widely used thermal synthesis method for the production of polyisobutylene (PIB)-succinimide type additives. Beside, our aim was to use raw materials originated from partly renewable source to meet the biodegradability requirements. These synthesized additives showed same or even better detergent–dispersant properties compared to the traditional PIB-succinimides and also provided corrosion inhibiting and lubricity improving effects when applied in diesel fuel, 5% biodiesel containing diesel fuel and 100% biodiesel.  相似文献   

10.
Use of near-infrared (NIR) transmittance spectroscopy for rapid determination of the oxidation level in soybean oils (SBO) was investigated, and calibrations were developed for quantitative determination of peroxide value (PV), conjugated diene value (CD), and anisidine value (AV) of SBO. Partial least squares (PLS) regression and forward stepwise multiple linear regression were used to develop calibration models from spectral data in log 1/T, first derivative and second derivative of log 1/T formats for both 1- and 2-mm path lengths. The models were validated by comparing NIR results from independent sample sets to the values obtained by official methods. The spectral region from 1100 to 2200 nm was best for measuring oxidation when using a 2-mm path length. PLS regression using first-derivative spectra gave the best results for PV. For the validation sets, linear relationships were obtained for PV (r=0.99), and CD (r=0.95), compared with accepted reference procedures. However, measurement of AV by NIR was less successful than measurement of the other two indices of oxidation, especially for an external validation sample set. Results obtained in this study indicate that NIR spectroscopy is a useful technique for measuring oxidation in soybean oil.  相似文献   

11.
Efforts are under way to reduce diesel engine emissions (DEE) and their content of carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAH). Previously, we observed reduced PAH emissions and DEE mutagenicity caused by reformulated or newly developed fuels. The use of rapeseed oil as diesel engine fuel is growing in German transportation businesses and agriculture. We now compared the mutagenic effects of DEE from rapeseed oil (RSO), rapeseed methyl ester (RME, biodiesel), natural gas-derived synthetic fuel (gas-to-liquid, GTL), and a reference petrodiesel fuel (DF) generated by a heavy-duty truck diesel engine using the European Stationary Cycle. Mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium mammalian microsome assay with strains TA98 and TA100. The RSO particle extracts increased the mutagenic effects by factors of 9.7 up to 17 in strain TA98 and of 5.4 up to 6.4 in strain TA100 compared with the reference DF. The RSO condensates caused up to three times stronger mutagenicity than the reference fuel. RME extracts had a moderate but significantly higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. Regulated emissions (hydrocarbons, carbon monoxide, nitrogen oxides (NOx), and particulate matter) remained below the limits except for an increase in NOx exhaust emissions of up to 15% from the tested biofuels.  相似文献   

12.
Two methods for stereospecific analysis of triacylglycerols are compared. Procedure A, based on stereospecific phosphorylation ofsn-1,2-diacylglycerols to phosphatidic acids, and procedure B, based on separation of the diastereomeric 1,2(2,3)-diacylglycerol urethane derivatives by high-performance liquid chromatography on silica, were applied to olive oil triacyl-sn-glycerols. Statistical evaluation of the results showed good reproducibility, and Student'st-test indicates no statistical differences between the two considered procedures, although some small differences were observed and discussed. Fifteen samples of extra-virgin olive oil, produced in the same region (Umbria, Italy), were analyzed with the two considered procedures.  相似文献   

13.
张爱华  肖志红  张良波  皮兵  李洋  李昌珠 《应用化工》2014,(11):2000-2002,2007
选用典型的高含油光皮树果实,采用等体积浸渍法制备固体碱催化剂KF/CaO催化裂解制备生物燃料油,并通过FTIR、XRD、SEM、CO2-TPD等对催化剂进行表征。对催化裂解后气相产率、液体油产率和固相产率的变化来验证催化剂的催化性能,考察催化剂用量、裂解反应时间和裂解反应温度对产物产率的影响。实验结果表明,在催化剂用量1.2%、反应温度500℃、反应时间为45min的条件下,实测生物燃料油产率可以达到82.56%。  相似文献   

14.
The purpose of this study was to evaluate the trans fatty acid (TFA) composition and the tocopherol content in vegetable oils produced in Mexico. Sample oils were obtained from 18 different oil refining factories, which represent 72% of the total refineries in Mexico. Fatty acids and TFA isomers were determined by gas chromatography using a 100-m fused-silica capillary column (SP-2560). Tocopherol content was quantified by normal-phase high-performance liquid chromatography using an ultraviolet detector and a LiChrosorb Si60 column (25 cm). Results showed that 83% of the samples corresponded to soybean oil. Seventy-two percent of the oils analyzed showed TFA content higher than 1%. Upon comparing the tocopherol contents in some crude oils to their corresponding deodorized samples, a loss of 40–56% was found. The processing conditions should be carefully evaluated in order to reduce the loss of tocopherols and the formation of TFA during refining.  相似文献   

15.
Vegetable oils are a renewable and an environmentally friendly alternative to petroleum-based oils in lubrication and other important application areas. Vegetable oils fall into two broad chemical categories: triesters (or TG) and monoesters. Most vegetable oils are triesters of glycerol with FA, whose characteristics are dependent on the chemistry and composition of the FA residues. A small percentage of vegetable oils are monoesters of long-chain FA and fatty alcohols of varying chemistries. In this work, the free energy of adsorption (ΔG ads) of safflower (SA), high-oleic safflower (HOSA), and jojoba (JO), methyl oleate (MO), and methyl palmitate (MP) on steel were investigated. SA and HOSA are TG of vegetable oils with FA residues of radically different degrees of unsaturation. JO is a monoester vegetable oil. ΔG ads is one of the major factors affecting the boundary friction properties of lubricant ingredients. ΔG ads was found to increase in the order: HOSA≤SA<JO<MO≤MP. The results are consistent with the degree of functionality and other chemical properties of the oils studied.  相似文献   

16.
This paper reports the fatty acid and triacylglycerol (TAG) compositions of five Amaranthus accessions (RRC1011, R149, A.K343, A.K432, and A. K433) representing two species and a cross between one of these and a third species. Seed oils of these were analyzed by gas chromatography and reversed-phase high-performance liquid chromatography, and their compositional properties compared with buck-wheat (Fagopyrum esculentum), corn (Zea mays), rice bran (Oryza sativa), soybean (Glycine max L. Merr.), sesame (Sesamum indicum), quinoa (Chenopodium quinoa), and cottonseed (Gossypium hirsutum) oils. All Amaranthus accessions were relatively high in palmitic (21.4–23.8%) and low in oleic (22.8–31.5%) and linolenic (0.65–0.93%) acids when compared to most of the grain and seed oils. The fatty acid composition of Amaranthus accessions K343, K433, and K432 (group I) were different from R149 and RRC1011 (group II) in mono and polyunsaturated fatty acids, but the saturate/unsaturate (S/U) ratios were very similar. All Amaranthus accessions were similar in TAG type, but showed slight differences in percentage. High similarities in UUU, UUS, and USS composition were observed among Amaranthus K343, K433 and K432, and between R149 and RRC1011. The fatty acid compositions of Amaranthus oil (group I) and cottonseed oil were similar, but their TAG compositions were different. The grain and oilseed oils were different from each other and from the Amaranthus accessions oils in terms of fatty acid composition, S/U, and TAG ratios. The UUU, UUS, and USS percentages were very diverse in grain and seed oils. The percentages of squalene in the TAG sample from the Amaranthus accessions were 8.05% in K343, 11.10% in K433, 11.19% in K432, 9.96% in R149, and 9.16% in RRC1011. Squalene was also tentatively identified in quinoa and ricebran oils at levels of 3.39 and 3.10%, respectively.  相似文献   

17.
Minor constituents of vegetable oils during industrial processing   总被引:6,自引:10,他引:6  
We report the effects of individual steps of industrial refining, carried out in Brazil, on the alteration of selected minor constituents of oils, such as corn, soybean, and rapeseed oils. Total sterols, determined by capillary gas chromatography (GC), decreased by 18–36% in the fully refined oils, compared with the crude oils. The total steradienes, dehydration products of sterols, were determinedvia a simple clean-up on a short silica gel column, followed by high-performance liquid chromatography (HPLC) with ultraviolet detection. The level of steradienes, normally not present in crude oils, increased after each refining step, especially after deodorization. Thus, the content of steradienes increased after deodorization by about 15- to 20-fold in corn and soybean oils, and by about 2-fold in rapeseed oil. The total steryl esters were also determinedvia clean-up on a short silica gel column, followed by HPLC with evaporative light scattering mass detection. A minor decrease in the level of steryl esters was observed after complete refining. The individual tocopherols and tocotrienols were determined by HPLC with a fluorescence detector. The level of total tocopherols and tocotrienols decreased by about 2-fold after complete refining of corn oil and by about 1.5-fold in soybean and rapeseed oils. In all three cases, maximum reduction of tocopherols was observed after the deodorization step. The level of polymeric glycerides, determinedvia clean-up on a short silica gel column followed by size-exclusion HPLC, increased to some extent (0.4–1%) during refining. The level oftrans fatty acids, determined by capillary GC, also increased to a substantial extent (1–4%) after refining. Part of doctoral thesis of Roseli Ap. Ferrari to be submitted to Faculdade de Engenharia de Alimentos, Universidade de Campinas, Campinas, Brazil.  相似文献   

18.
Kinetics of the formation of trans linoleic acid and trans linolenic acid were compared. Pilot plant-scale tests on canola oils were carried out to validate the laboratory-scale kinetic model of geometrical isomerization of polyunsaturated fatty acids described in our earlier publication. The reliability of the model was confirmed by statistical calculations. Formation of the individual trans linoleic and linolenic acids was studied, as well as the effect of the degree of isomerization on the distribution of the trans fatty acid isomers. Oil samples were deodorized at temperatures from 204 to 230°C from 2 to 86 h. Results showed an increase in the relative percentage of isomerized linolenic and linoleic acid with an increase in either the deodorization time or the temperature. The percentage of trans linoleic acid (compared to the total) after deodorization ranged from <1 to nearly 6%, whereas the percentage of trans linolenic acid ranged from <1 to >65%. Applying this model, the researchers determined the conditions required to produce a specially isomerized oil for a nutritional study. The practical applications of these trials are as follows: (i) the trans fatty acid level of refined oils can be predicted for given deodorization conditions, (ii) the conditions to meet increasingly strict consumer demands concerning the trans isomer content can be calculated, and (iii) the deodorizer design can be characterized by the deviation from the theoretical trans fatty acid content of the deodorized oil.  相似文献   

19.
The ability of mycelium-bound lipase of a locally isolated Aspergillus flavus to modify the triglyceride structure of vegetables oils was studied. The catalysis involved the acidolysis of vegetable oils, such as palm olein, coconut oil, cotton-seed oil, rapeseed oil, corn oil and soybean oil, with selected fatty acids (FA). The reactions were followed against time, and the percentages of FA incorporated were determined by gas chromatography. Percentage of FA incorporated after 20-h reaction was in the range of 13 to 18%. Reaction between cottonseed oil with lauric acid gave the highest percentage of incorporation (18%), followed by soybean oil with lauric acid (16%) and coconut oil with oleic acid (16%). The results indicated that the hydrolytic affinity of A. flavus lipase demonstrates an acyl group specificity toward short-chain FA (C8–C10). Changes in triglyceride profiles of each oil were also monitored by reverse-phase high-pressure liquid chromatography. In all products, there were increases in the concentrations of several existing triglycerides and formation of new triglycerides. The melting points of all acidolyzed vegetable oils were determined by differential scanning calorimetry, and significant changes in melting profiles were noted.  相似文献   

20.
植物油脚的综合利用   总被引:3,自引:1,他引:3  
王晓辉  司南  叶爱英  姚成 《现代化工》2006,26(11):21-24
根据国内外油脂化工产业的发展现状,在对植物油脚、植物沥青的成分进行分析研究的基础上提出了植物油脚深加工利用的新研究思路。采用作者所在课题组的研究路线,植物油脚经过综合利用,可得到甘油、二聚酸、异硬脂酸、生物柴油、植物甾醇和天然维生素E等重要化工原料和化学品,利用率可达95%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号