首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
Adsorption is a key process affecting the fate of insecticidal Cry proteins (Bt toxins), produced by genetically modified Bt crops, in soils. However, the mechanisms of adsorption to soil organic matter (SOM) remain poorly understood. This work assesses the forces driving the adsorption of Cry1Ab to Leonardite humic acid (LHA), used as a model for SOM. We studied the effects of solution pH and ionic strength (I) on adsorption using a quartz crystal microbalance with dissipation monitoring and optical waveguide lightmode spectroscopy. Initial Cry1Ab adsorption rates were close to diffusion-limited and resulted in extensive adsorption, even at pH >6, at which LHA and Cry1Ab carry negative net charges. Adsorption increased with decreasing I at pH >6, indicating Cry1Ab-LHA patch-controlled electrostatic attraction via positively charged domains of Cry1Ab. Upon rinsing, only a fraction of Cry1Ab desorbed, suggesting a range of interaction energies of Cry1Ab with LHA. Different interaction energies likely resulted from nonuniformity in the LHA surface polarity, with higher Cry1Ab affinities to more apolar LHA regions due to the hydrophobic effect. Contributions from the hydrophobic effect were substantiated by comparison of the adsorption of Cry1Ab and the reference proteins albumin and lysozyme to LHA and to apolar and polar model surfaces.  相似文献   

2.
Adsorption governs the fate of Cry proteins from genetically modified Bt crops in soils. The effect of ionic strength (I) on the adsorption of Cry1Ab (isoelectric point IEP(Cry1Ab) ≈ 6) to negatively charged quartz (SiO(2)) and positively charged poly-L-lysine (PLL) was investigated at pH 5 to 8, using quartz crystal microbalance with dissipation monitoring and optical waveguide lightmode spectroscopy. Cry1Ab adsorbed via positively and negatively charged surface patches to SiO(2) and PLL, respectively. This patch controlled electrostatic attraction (PCEA) explains the observed increase in Cry1Ab adsorption to sorbents that carried the same net charge as the protein (SiO(2) at pH > IEP(Cry1Ab) and PLL at pH < IEP(Cry1Ab)) with decreasing I. In contrast, the adsorption of two reference proteins, BSA and HEWL, with different adsorption mechanism, were little affected by similar changes of I. Consistent with PCEA, Cry1Ab desorption from SiO(2) at pH > IEP(Cry1Ab) increased with increasing I and pH. Weak Cry1Ab-SiO(2) PCEA above pH 7 resulted in reversible, concentration dependent adsorption. Solution depletion experiments showed that PCEA also governed Cry1Ab adsorption to SiO(2) particles at environmentally relevant concentrations (a few ng mL(-1)). These results imply that models describing Cry1Ab adsorption to charged surfaces in soils need to account for the nonuniform surface charge distribution of the protein.  相似文献   

3.
Bt crops are genetically modified to be resistant against insect pests by expressing insecticidal Cry proteins. The processes governing the fate and bioavailability of the expressed transgenic Cry proteins in soils are poorly understood. We studied adsorption of Cry1Ab to negatively charged silica (SiO(2)) particles, a major soil constituent and a model for negatively charged mineral surfaces, at pH 5 to 10 and ionic strengths I = 10 mM to 250 mM, both in solution depletion and saturated column transport experiments. Cry1Ab-SiO(2) interactions were dominated by patch-controlled electrostatic attraction (PCEA), as evident from increasing Cry1Ab attraction to SiO(2) with decreasing I at pH at which both Cry1Ab and SiO(2) were net negatively charged. Experimental and modeling evidence is provided that the surface heterogeneity of SiO(2) particles modulated PCEA, leading to a fraction of adsorption sites with slow Cry1Ab desorption kinetics. Desorption rates from these sites increased upon increasing the solution pH. In toxicity bioassays, we demonstrated that Cry1Ab retained insecticidal activity when adsorbed to SiO(2), suggesting high protein conformational stability during adsorption-desorption cycles. Models predicting Cry1A protein adsorption in soils therefore need to account for combined effects of the nonuniform protein surface charge distribution and of sorbent surface heterogeneity.  相似文献   

4.
Genetically modified Bt crops express insecticidal Cry proteins (Bt toxins) that may enter agricultural soils. A mechanistic understanding of Cry protein adsorption to soils is critical for risk assessment, as this process governs Cry protein fate and bioavailability. We used quartz crystal microbalance and optical waveguide lightmode spectroscopy to elucidate the driving forces of the adsorption of monomeric Cry1Ab to negatively charged quartz (SiO(2)) and positively charged poly-L-lysine (PLL) at pH 5-8 and constant ionic strength of 50 mM (NaCl). Bovine serum albumin and hen egg white lysozyme were used as reference proteins because of their known adsorption behavior. Electrostatics governed Cry1Ab adsorption; as pH increased above the isoelectric point of Cry1Ab, the initial rate and the extent of adsorption decreased on SiO(2) and increased on PLL. Reversible adsorption to SiO(2) suggested weak Cry1Ab-SiO(2) electrostatic interactions and no irreversible conformational changes of Cry1Ab at the surface. High conformational stability of Cry1Ab was further supported by supply rate-independent extent of adsorption of Cry1Ab to apolar gold. Some evidence is presented that the nonuniform surface charge distribution of Cry1Ab resulted in patch-controlled electrostatic attraction with sorbents that carried the same net charge as Cry1Ab. A more detailed discussion of this mechanism is given in a companion paper.  相似文献   

5.
For monitoring the environmental impacts of a genetically modified crop well-established methods are a key requirement for the collection of appropriate data. With regard to the fate of Cry1Ab protein from Bt-maize MON810 released by root exudates, plant residues and pollen deposition into soil, a highly specific and sensitive sandwich enzyme immunoassay for detection and quantification of Cry1Ab in soil matrix was developed. The assay was validated according to the criteria of EU-Decision 2002/657/EC for a range of soils originating from four selected experimental field sites in South Germany, where Bt-maize MON810 has been cultivated. On three sites Bt-maize was grown permanently for eight years whereas one site was cropped with Bt-maize for one year only. The validation of the method showed that the assay fulfils the validation criteria as prescribed in the guidelines of the EU-Decision with minor restrictions. When the assay was applied to field soil samples collected from the selected four experimental sites six months after harvest, no Cry1Ab protein was detectable. By ELISA-determination and quantification of Cry1Ab protein in soils collected from these sites at further time points more profound knowledge about the long-term behaviour of Cry1Ab protein in soil will be obtained.  相似文献   

6.
Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0-10 mg L(-1)), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0-0.75), and pH (6.0-10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L(-1), greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments.  相似文献   

7.
Phenanthrene sorption to sequentially extracted soil humic acids and humins   总被引:2,自引:0,他引:2  
Humic substances strongly influence the environmental fate of hydrophobic organic chemicals in soils and sediments. In this study, the sorption of phenanthrene by humic acids (HAs) and humins was examined. HAs were obtained from progressively extracting a soil, eight times with 0.1 M Na4P207 and two times with 0.1 M NaOH solution, and then the residue was separated into two humin fractions by their organic carbon contents. The chemical and structural heterogeneity of the HAs and humins were characterized by elemental analysis, ultraviolet-visible spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, and solid-state 13C NMR. There were significant chemical and structural differences among the HA fractions and humins; the later extracted HAs had relatively high aliphatic carbons content. All sorption data were fitted to a Freundlich equation, S = K(F)C(N), where S and C are the sorbed and solution-phase concentrations, respectively, and K(F) and N are constants. All of the phenanthrene sorptions were nonlinear, and the nonlinearity decreased with further extractions from 0.90 (first extracted HA) to 0.96 (ninth HA) and was the lowest (0.88) for the higher organic carbon content humin. Phenanthrene sorption coefficient by HAs significantly increased with progressive extractions, being the highest for the humins. For HAs isotherms, a positive trend was observed between the sorption coefficient and the aliphaticity, but a negative relation was shown between the nonlinearity and the aliphaticity and between the sorption capacity and polarity of HAs. Phenanthrene sorption was greatly affected by chemical structure and composition of humic substances, even from a same soil. In addition, polarity of humic substances seems to mainly regulate the magnitude of phenanthrene sorption rather than structure.  相似文献   

8.
The sorption of three humic acids to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine multilamellar vesicle model membrane systems was studied by phosphorus nuclear magnetic resonance (31P NMR). The effects of temperature and pH were investigated. The gel --> bilayer transition did not appear to be affected by any of the humic acids at pH 7; however, all three humic acids induced a perturbation to this transition and to the bilayer structure at pH 4. On the basis of the findings from this and other work, a conceptual adsorption/absorption model for the sorption of humic acid (HA) to biomembranes has been put forward. The model requires an initial adsorption step initiated at an acidic pH by hydrogen bridging and electrostatic interactions between the functional groups of the HAs and the head groups of the phospholipids. Once the HA material is adsorbed, its hydrophobic domains can further seek a more thermodynamically favorable environment within the bilayer using hydrophobic interactions. These interactions lead to the HA being absorbed into the membrane, which subsequently induces the observed perturbation by disturbing the ordered packing of the phospholipid tail groups. This model is also related to other humic substances/biomembrane observations in the literature.  相似文献   

9.
The distinct effects of humic acid (HA, 0-10 mg L(-1)) on the transport of titanium dioxide (rutile) nanoparticles (nTiO(2)) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3-200 mM NaCl, pH 5.7 and 9.0). Specifically, the transport of nTiO(2) was dramatically enhanced in the presence of HA at pH 5.7, even at a low HA concentration of 1 mg L(-1). The mobility of nTiO(2) was further increased with greater concentrations of HA. In contrast, this enhancement of the nTiO(2) transportability due to the presence of HA was limited at pH 9.0 because of the negligible adsorption of HA onto nTiO(2), regardless of the concentrations of HA examined in this study. The distinct effects can be explained by the adsorption behaviors of HA to nTiO(2) and sand surfaces and the resulting interactions between nTiO(2) and sand surfaces under different conditions, which resulted in a large variation of the nTiO(2) transport and deposition behaviors at various conditions. In addition, theoretical interaction energy calculations and additional elution experiments indicate that the secondary energy minimum played an important role in controlling the nTiO(2) transport and deposition in porous media observed in this study. Moreover, the interaction energy calculations suggest that at pH 5.7, HA affected nTiO(2) transport by increasing the negative surface charge of nTiO(2) at low HA adsorption densities; whereas, combinations of increased electrostatic and steric interactions due to the presence of HA were the main mechanisms of enhanced transportability of nTiO(2) at high HA adsorption densities. Overall, results from this study suggest that natural organic matter and solution pH are likely key factors that govern the stability and mobility of nTiO(2) in the natural aquatic environment.  相似文献   

10.
Protein encapsulation by humic substances   总被引:2,自引:0,他引:2  
Protein encapsulation by natural organic matter is hypothesized to preserve the activity of proteins in terrestrial and aquatic environments. Direct molecular-level evidence for encapsulation of net positively charged proteins lysozyme, trypsin, and ribonuclease A by a diverse set of humic substances (HS) in nanostructured films was collected using a combination of optical waveguide lightmode spectroscopy and quartz crystal microbalance measurements. The results suggest that protein-HS electrostatic attraction drives encapsulation of positively charged lysozyme by a soil humic acid at pH 5 to 8 and by six additional humic and fulvic acids from terrestrial and mixed terrestrial aquatic sources at pH 5 and 6. Encapsulation of trypsin and ribonuclease A, which had negatively charged surface patches under the studied conditions, suggested that localized protein-HS electrostatic repulsion is overcompensated by attractive forces, likely including contributions from the hydrophobic effect. Evidence is provided showing that encapsulation of lysozyme at pH 8 and of ribonuclease A at pH 5 and 6 involved partial disassembly of HA supramolecular associations. This work advances a molecular-level picture of protein encapsulation by HS and presents a novel approach to study the effects of encapsulation on protein enzymatic activity and susceptibility to abiotic and biotic transformations.  相似文献   

11.
The fate and mobility of boric acid in the environment is largely controlled by adsorption reactions with soil organic matter and soil minerals to form surface complexes (Soil Sci Soc. Am. J. 1991, 55, 1582; Geochim. Cosmochim. Acta 2002, 67, 2551; Soil Sci. Soc. Am. J. 1995, 59, 405; Environ. Sci. Technol. 1995, 29, 302). In this study, boric acid adsorption on pure am-Al(OH)3 and 5% (w/w) humic acid (HA) coated am-Al(OH)3 were investigated both as a function of pH (4.5-11) and initial boric acid concentration (0-4.5 mmol L(-1)). Batch adsorption isotherm experiments were also conducted with samples exposed to atmospheric CO2 and anaerobic (N2) conditions to examine the effects of dissolved CO2 on boric acid adsorption. Boron (B) K-edge X-ray absorption near-edge structure (XANES) spectroscopy was used to investigate the coordination of boric acid adsorbed at mineral/water interfaces. The XANES spectra of boric acid adsorption samples showed that both trigonally and tetrahedrally coordinated B complexes were present on the mineral surface. Both macroscopic and spectroscopic experiments revealed that the combination of HA coating on am-Al(OH)3 and dissolved CO2 decreased boric acid adsorption compared to adsorption on pure am-Al(OH)3.  相似文献   

12.
The acid-base properties of humic acids (HAs) are known to significantly affect the acid-base buffering capacity of soils, thus having a marked influence on the speciation of cations in the soil solid and liquid phases. Detailed information on the proton binding behavior of humic-like acids (HALs) from organic amendments and humic acids (HAs) from amended soils is, therefore, of intrinsic interest for the evaluation of the agronomic efficacy and environmental impact of soil amendment. In this work, the acid-base properties of HLAs isolated from sewage sludge (SS) and municipal solid waste compost (MSWC), and HAs isolated from soils amended with either SS or MSWC and the corresponding nonamended control soils were investigated by potentiometric titrations at various ionic strengths (0.01, 0.05, 0.1, and 0.3 M) over the pH range from 3.5 to 10.5. The nonideal competitive adsorption (NICA)-Donnan model that describes proton binding by two classes of binding sites with low and high proton affinity, i.e., carboxylic- and phenolic-type groups, was fit to titration data, and a set of fitting parameters was obtained for each HLA and HA sample. The NICA-Donnan model successfully described the shapes of the titration curves, and highlighted substantial differences in site density and proton-binding affinity between the HLAs and HAs examined. With respect to the nonamended control soil HAs, SS-HLA and MSWC-HLA were characterized by smaller carboxylic-type and phenolic-type group contents, larger affinities for proton binding by the carboxylic-type groups, and smaller affinities for proton binding by the phenolic-type groups. Amendment with SS and MSWC determined a number of modifications in soil HAs, including decrease of acidic functional group contents, slight increase of proton affinity of carboxylic-type groups, and slight decrease of the affinities for proton binding by phenolic-type groups. These effects were more evident in the HA fraction from the SS-amended soil than in the HA fraction from the MSWC-amended soil. Thus, both organic amendments examined can be a considered as a valuable source of organic matter for soil. However, MSWC appears to be an amendment of greater quality producing a smaller impact than SS on proton-binding behavior of soil HA.  相似文献   

13.
The sorption behavior of organic compounds (phenanthrene, lindane, and atrazine) to sequentially extracted humic acids and humin from a peat soil was examined. The elemental composition, XPS and (13)C NMR data of sorbents combined with sorption isotherm data of the tested compounds show that nonspecific interactions govern sorption of phenanthrene and lindane by humic substances. Their sorption is dependent on surface and bulk alkyl carbon contents of the sorbents, rather than aromatic carbon. Sorption of atrazine by these sorbents, however, is regulated by polar interactions (e.g., hydrogen bonding). Carboxylic and phenolic moieties are key components for H-bonding formation. Thermal analysis reveals that sorption of apolar (i.e., phenanthrene and lindane) and polar (i.e., atrazine) compounds by humic substances exhibit dissimilar relationships with condensation and thermal stability of sorption domains, emphasizing the major influence of domain spatial arrangement on sorption of organic compounds with distinct polarity. Results of pH-dependent sorption indicate that reduction in sorption of atrazine by the tested sorbents is more evident than phenanthrene with increasing pH, supporting the dependence of organic compound sorption on its polarity and structure. This study highlights the different interaction mechanisms of apolar and polar organic compounds with humic substances.  相似文献   

14.
We performed experiments on in vitro digestion of newly expressed proteins by SGF (simulated gastric fluid) and SIF (simulated intestinal fluid) to assess the allergenicity of food components derived from biotechnological modification. For newly expressed proteins, we chose CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase from Agrobacterium sp. strain CP4) and Cry1Ab derived from Bacillus thuringiensis subsp. kurstaki strain HD-1. The former is expressed in GM-soybeans and the latter is expressed in GM-corns. Firstly, we examined the digestibility of purified CP4-EPSPS and Cry1Ab by SGF. Both proteins were rapidly digested within 60 sec. After preheating, the digestibility by SGF was slightly increased. Secondly, CP4-EPSPS in GM-soybean extracts and Cry1Ab in GM-corn extracts were digested by SGF. The digestion time of both proteins by SGF was almost the same as that of the purified proteins. Thirdly, the digestibility of CP4-EPSPS and Cry1Ab by SIF was examined. The digestion time of these proteins was 240 min or more. However, digestibility of these proteins by SIF was dramatically increased by preheating, and the digestion time was less than 5 sec. Fourthly, CP4-EPSPS in GM-soybean extracts and Cry1Ab in GM-corn extracts were digested by SIF. Digestion time of both proteins by SIF was almost the same as that of the purified proteins. From these results, we concluded that the digestibility of both CP4-EPSPS and Cry1Ab by SGF and SIF was increased by preheating. Therefore, we suggest that the allergenicity of both proteins should be extremely low because of the easy digestibility of these proteins by SGF and also by SIF with preheating.  相似文献   

15.
The first paper of this series reported that soil/sediment organic matter (SOM) can be fractionated into four fractions with a combined wet chemical procedure and that kerogen and black carbon (BC) are major SOM components in soil/sediment samples collected from the industrialized suburban areas of Guangzhou, China. The goal of this study was to determine the sorptive properties forthe four SOM fractions for organic contaminants. Sorption isotherms were measured with a batch technique using phenanthrene and naphthalene as the sorbates and four original and four Soxhlet-extracted soil/sediment samples, 15 isolated SOM fractions, and a char as the sorbents. The results showed that the sorption isotherms measured for all the sorbents were variously nonlinear. The isolated humic acid (HA) exhibited significantly nonlinear sorption, but its contribution to the overall isotherm nonlinearity and sorption capacity of the original soil was insignificant because of its low content in the tested soils and sediments. The particulate kerogen and black carbon (KB) fractions exhibited more nonlinear sorption with much higher organic carbon-normalized capacities for both sorbates. They dominate the observed overall sorption by the tested soils and sediments and are expected to be the most important soil components affecting bioavailability and ultimate fate of hydrophobic organic contaminants (HOCs). The fact that the isolated KB fractions exhibited much higher sorption capacities than when they were associated with soil/sediment matrixes suggested that a large fraction of the particulate kerogen and BC was not accessible to sorbing HOCs. Encapsulation within soil aggregates and surface coverage by inorganic and organic coatings may have caused large variations in the accessibility of fine kerogen and BC particles to HOCs and hence lowered the sorption capacity of the soil. This variability posts an ultimate challenge for precisely predicting HOC sorption by soils from the contents of different types of SOM.  相似文献   

16.
The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.0) were measured, and the results were compared to those of fulvic acids (FA). Compared to FA, the adsorption of HA is stronger and more ionic strength dependent. The adsorption of both HA and FA decreases with increasing pH. The relative change of the adsorption with pH is bigger for HA than for FA at relatively low pH. At relatively high pH, it is the opposite. Protons are released at pH 4.0 and co-adsorbed at pH 5.5 and 7.0 upon the adsorption of both HA and FA. The observed pH dependency of HA and FA adsorption is in agreement with the proton co-adsorption data. Model calculations show that the adsorbed FA particles are on average located in the Stern layer, whereas the adsorbed HA particles protrude beyond the Stern layer. The closer location to the surface of the adsorbed FA leads to stronger electrostatic interactions between the FA particles and the surface, which explains the larger amount of protons released at low pH and co-adsorbed at high pH with each mass unit of FA adsorbed than that with HA adsorbed. The model also revealsthatfor FA a mean-field (smeared-out) approximation is reasonable, but for HA a patchwise approach is more appropriate at relatively low loading.  相似文献   

17.
Partition coefficients for the binding affinities of atrazine to 16 different humic materials were determined by the ultrafiltration HPLC technique. Sources included humic acids (HA), fulvic acids (FA), and combined humic and fulvic fractions (HF) from soil, peat, and coal humic acid. Each of the humic materials was characterized by elemental composition, molecular weight, and composition of main structural fragments determined by 13C solution-state NMR. The magnitude of K(OC) values varied from 87 to 575 L/kg of C, demonstrating relatively low binding affinity of humic substances (HS) for atrazine. On the basis of the measured K(OC) values, the humic materials can be arranged in the following order: coal HA approximately = gray wooded soil HA > chernozemic soil HA and HF > sod-podzolic soil HA approximately = peat HF > sod-podzolic soil FA > peat dissolved organic matter. The magnitude of the K(OC) values correlated strongly with the percentage of aromatic carbon in HS samples (r = 0.91). The hydrophobic binding was hypothesized as the key interaction underlying the binding of atrazine to HS.  相似文献   

18.
The sorption of a hydrophobic pesticide, thiram, on humic acid (HA) occurs via a specific pH-dependent binding of thiram at the deprotonated carboxylates of humic acid, forming a species thiram-[HACOO-] with K = 0.69. Similarly, thiram was sorbed by two model polycarboxylate-{SiO2COOH} materials via the formation of a surface species thiram-{SiO2COO-} with K = 0.45 between thiram and the eprotonated carboxylates grafted on SiO2 particles. In all cases, allowance of presence of bicarbonate at natural concentration caused severe inhibition of thiram's sorption. Oxalate and formate mimic the inhibitive effect of bicarbonate. Theoretical fit of the data showed that the inhibitive effect of HCO3- is due to the formation of the anionic species [thiram-HCO3](-1) (with K = 0.90) which is water soluble and competes with the bound species thiram-{HACOO-}. The same phenomena were observed for the sorption of disulfiram. The specific interaction phenomena reported here bear relevance to the sorption properties of thiram and disulfiram on real soils and, therefore, may determine their environmental fate.  相似文献   

19.
This paper examines the adsorption of Pb(II) and a natural organic macromolecular compound (humic acid, HA) on polyacrylamide (PAAM) -grafted multiwalled carbon nanotubes (denoted as MWCNTs/PAAM), prepared by an N(2)-plasma-induced grafting technique. The mutual effects of HA/Pb(II) on Pb(II) and HA adsorption on MWCNTs/PAAM, as well as the effects of pH, ionic strength, HA/Pb(II) concentrations, and the addition sequences of HA/Pb(II) were investigated. The results indicated that Pb(II) and HA adsorption were strongly dependent on pH and ionic strength. The presence of HA led to a strong increase in Pb(II) adsorption at low pH and a decrease at high pH, whereas the presence of Pb(II) led to an increase in HA adsorption. The adsorbed HA contributed to modification of adsorbent surface properties and partial complexation of Pb(II) with the adsorbed HA. Different effects of HA/Pb(II) concentrations and addition sequences on Pb(II) and HA adsorption were observed, indicating different adsorption mechanisms. After adsorption of HA on MWCNTs/PAAM, the adsorption capacity for Pb(II) was enhanced at pH 5.0; the adsorption capacity for HA was also enhanced after Pb(II) adsorption on MWCNTs/PAAM. These results are important for estimating and optimizing the removal of metal ions and organic substances by use of MWCNT/PAAM composites.  相似文献   

20.
Cyclic oxidation and reduction reactions using oxygen and palladium with H2, respectively, of dissolved humic and fulvic acids (HA and FA) and model quinone compounds were used to structurally characterize and quantify the electron-carrying capacity (ECC) of reversible redox sites present in humic substances. This technique was used to examine 8 quinone compounds and 14 HA and FA samples and identified 3 redox sites as a function of their stability against the Pd-catalyzed hydrogenolysis process. Six highly aliphatic HA and FA isolated from landfill leachate did not contain redox sites under any conditions; however, the other HA and FA demonstrated reversible redox properties characterized by a combination of three redox sites. On the basis of the model compound results, it is proposed that one site consists of a non-quinone structure (NQ) and the other two sites have quinone structures. The two quinone sites differ in that one group (Q1) has electron-withdrawing groups adjacent to the quinone functional group while the second group (Q2) contains either no substituents near the quinone or has nearby electron-donating groups with additional substitutents hindering hydrogenolysis through steric interactions. The reversible ECC of NQ sites ranged from 25 to 265 microequiv e- transferred/g HA or FA, representing 21-56% of the total ECC of the HA and FA when measured with the mildest reducing method (pH 8.0, pure Pd). Q1 redox sites resistant to hydrogenolysis at pH 8.0 using Pd/Al2O3 accounted for 13-58% of the total ECC and ranged from 40 to 120 microequiv e-/ g HA or FA. The most sensitive O2 reversible redox sites accounted for 8-50% of the total ECC (20-220 microequiv e-/ g HA or FA). These results directly demonstrate that HA and FA are capable of acting as reversible electron-transfer agents using different functional groups, some of which may not be quinones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号