首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A capacitor-clamped voltage-source inverter for active power filter operation under balanced and unbalanced conditions is proposed to suppress current harmonics and compensate the reactive power generated from the nonlinear loads. The adopted voltage-source inverter is based on a three-level capacitor-clamped topology to reduce the voltage stress of power semiconductors. Two control loops are used in the control scheme to achieve harmonic and reactive currents compensation and to regulate the inverter dc side voltage. In the adopted inverter, the neutral point voltage is compensated by a voltage compensator to obtain the balanced capacitor voltages on the dc side. In order to control the flying capacitor voltages, two redundant states in each inverter leg can be selected to compensate the flying capacitor to obtain a better voltage waveform with low harmonic contents on the ac terminals. The balanced and sinusoidal line currents are drawn from the ac source under the balanced and unbalanced conditions. The feasibility of the proposed scheme is confirmed through experimental results  相似文献   

2.
A three-phase voltage-source inverter for a power quality compensator under the unbalanced mains and nonlinear loads is proposed to provide balanced three-phase source current and improve input power factor. The proposed converter is based on the conventional three-phase voltage-source inverter with three additional ac power switches to achieve three-level pulsewidth modulation. The voltage stress of three ac power switches is clamped to half the dc-link voltage. The balanced reference mains currents are estimated using the dc-bus voltage and load currents. A proportional-integral voltage controller is used in the outer loop to compensate the switching losses of the voltage-source inverter. To perform the integrated power quality compensation, a hysteresis current control scheme is adopted to track the balanced line current command in phase with mains voltage. Three voltage levels are generated on the ac terminal of the proposed inverter. Computer simulation and experimental results are provided to verify the effectiveness of the proposed control scheme.  相似文献   

3.
Control of Three-Phase, Four-Wire PWM Rectifier   总被引:1,自引:0,他引:1  
This paper presents the analysis, design, and control of a four-wire rectifier system using split-capacitor topology. The proposed controller does not require any complex transformation or input voltage sensing. A detailed analysis of the distortions in the line and the neutral currents is presented. It is shown that the single-carrier-based, conventional sine-triangle PWM (CSPWM) scheme results in a peak-to-peak neutral current ripple, which is greater than the peak-to-peak ripple of any of the line currents. Also, for the same operating condition, the distortions in the line and the neutral currents increase considerably, when a three-limb boost inductor is used instead of three single-phase inductors. A three-carrier-based SPWM scheme is proposed in this paper. Compared to CSPWM, the proposed scheme significantly reduces the neutral current ripple when three single-phase inductors are used, and reduces both line and neutral current ripples when a three-limb inductor is used. The control scheme is verified through Matlab simulation. It is implemented on an field-programmable gate-array (FPGA)-based digital controller and tested on a prototype. Simulation and experimental results are presented.  相似文献   

4.
A single-stage power-factor-corrected AC/DC converter (SSPFC) usually causes high voltage stress on the intermediate storage capacitor, due to the lack of control of this voltage. The storage capacitor voltage varies largely with line voltage, and load current and is usually higher than the peak line voltage. This paper presents a new single-switch SSPFC based on a flyback topology for which the storage capacitor voltage is loosely regulated by the output voltage. Without using extra power switches to increase the control dimension, the proposed converter uses a flyback converter with dual-output transformer to achieve the control purpose. The range of storage capacitor voltage change against the change of input voltage and load current is significantly reduced. Moreover, the maximum storage capacitor voltage can stay below the peak line voltage at high line condition. Experimental results verifying the operation of the proposed SSPFC are also reported.  相似文献   

5.
This paper presents a new control strategy for power factor correctors (PFCs) that are used to drive high-brightness LEDs. This control strategy is extremely simple and is based on the use of a conventional peak-current-mode controller with a suitable selection of the compensation ramp waveform. Neither an analog multiplier nor an input voltage sensor is needed to achieve quasi-sinusoidal line waveforms at nominal conditions and full load. If the converter belongs to the flyback family (flyback, buck–boost, SEPIC, Cuk and Zeta), the line waveform appears notably distorted if the compensation function is a linear ramp, but becomes almost sinusoidal if the linear ramp is substituted by a properly chosen exponential function. The line waveform is slightly distorted when the load varies or when the converter works under either overvoltage or undervoltage conditions. However, the waveform maintains a very high power factor (PF) even under these conditions. Moreover, the line current is cycle-by-cycle-controlled due to the peak-current-mode control, and hence, the input-current feedback loop is extremely fast, thereby allowing this type of control to be used with high-frequency lines (above 400 Hz).   相似文献   

6.
This paper proposes a new three-phase single-stage power-factor corrector buck-boost-type rectifier topology. The typical topology uses a bridge configuration with six switches. This new topology only requires four switches, improving the rectifier efficiency as only one reverse-blocking power semiconductor conducts at any time. A vector-based sliding-mode control method for the three-phase input currents is also proposed. This fast and robust technique uses sliding mode to generate /spl alpha//spl beta/ space-vector modulation, which forces the input line currents to track a suitable sinusoidal reference. A near-unity power-factor operation of the rectifier is obtained using a sinusoidal reference in phase with the input source voltages. A proportional-integral controller is adopted to regulate the output voltage of the converter. This external voltage controller modulates the amplitude of the current references. The characteristics of the new rectifier are verified with experimental results.  相似文献   

7.
In this paper, a novel controller with fixed modulation index (MI) and variable dc capacitor voltage reference to minimize voltage and current harmonics is presented for a distribution static synchronous compensator (STATCOM). The STATCOM with the proposed controller consists of a three-phase voltage-sourced inverter and a dc capacitor and is used to provide reactive power compensation and regulate ac system bus voltage with minimum harmonics. A systematic design procedure based on pole-zero cancellation, root locus method, and pole assignment method has been developed to determine proper parameters for the current regulator, the dc voltage controller, and the ac voltage controller of the STATCOM. With the proposed STATCOM controller, harmonic distortions in the inverter output current and voltage can be reduced since the MI is held constant at unity in steady state. In addition, a fast adjustment in the STATCOM output reactive power is achieved to regulate the ac bus voltage through the adjustment of the dc voltage reference during the transient period. Simulation and experimental results for the steady-state operating condition and transient operating conditions for the system subjected to a reactive current reference step change, a three-phase line to neutral fault, and a step load change are presented to demonstrate the effectiveness of the proposed controller.  相似文献   

8.
A new AC/AC power converter topology, in which all the switches operate in a resonant fashion to reduce switching losses, is proposed. The topology enables conduction-period control of individual current pulses, whereby pulse-width modulation (PWM) could be achieved to a fair degree of accuracy with the associated controller. The scheme implements current peak (resonant) limiting by a simple diode clamp. Improved switch utilization (voltage × current) and reduced part-count could be cited as the merits of the circuit over the previous soft-switched current-sourced AC/AC configurations. It is experimentally verified that the output PWM controller could be used to implement constant V/F operation, and the results are presented. In-depth design criteria for the topology that gives optimized voltage stresses are presented. A charge-based, line current feed-forward, mode-controller is introduced at the input and digitally verified. Feasibility of the simultaneous control over both input power-factor and smooth input-output line currents are studied and the digital verification is presented  相似文献   

9.
The analysis of a multicell topology that is implemented with single-phase nonregenerative cells under an unbalanced ac mains is presented. The study shows that the topology naturally compensates most of the voltage unbalance; for instance, for a 100% voltage unbalance in the ac mains, just 32% reaches the load. For critical applications, a feedforward control technique is proposed in order to compensate the remaining unbalance at the load side. The resulting topology, in combination with the proposed strategy, reduces near to zero the load fundamental voltage unbalance, while the input current unbalance and distortion are also improved. A theoretical analysis that is based on symmetrical components and the experimental results confirm the theoretical considerations.  相似文献   

10.
The use of buck-derived topologies for unity power factor AC-to-DC applications is limited by their inherent inability to draw current from the line in those intervals, during the line half period, in which the input voltage is lower than the output one. This drawback is overcome in the proposed high-quality rectifier based on the forward topology with secondary-side resonant reset. The employed secondary side reset capacitor is able to provide proper transformer reset by recycling the transformer stored energy to the load and, at the same time, it allows to draw energy from the line even when the input voltage is lower than the output one. Consequently, besides a better utilization of the transformer core (bipolar core excitation), a low distorted input current waveform can be obtained with a power factor close to unity. Experimental results of a 200 W prototype confirm the theoretical expectations.  相似文献   

11.
To obtain a stable output voltage from a recently-developed rectification circuit called a quantum boost series resonant rectifier (QBSRR), two control schemes, digital PI (proportional-integral) control and deadbeat control, are derived for a computer-based system. Since the output voltage regulation loop has a sampling time corresponding to the zero crossing point of the AC line voltage, the output voltage can be controlled regardless of the 120 Hz ripple component. By deriving a simple and exact model for the current program loop (open loop) of a QBSRR and using the pole-assignmenl technique, the controller gains can be systematically designed in the digital PI control scheme. The deadbeat control scheme is also developed to maintain fast dynamic performance in the presence of any load variations. In this control scheme, the controller gain is adjusted in accordance with the load information using a load estimation method. Simulation and experimental results are presented to verify the usefulness of these two control schemes.  相似文献   

12.
A simple strategy and low cost control for the switching mode rectifier to work simultaneously as a power factor corrector and an active power filter (APF) to reduce current harmonics drawn from the nonlinear load are analysed and presented in this paper. The principal component of the control circuit is an Intel 80196MC microcontroller that performs the dc bus voltage and line current control. The sliding mode control is used in the current loop to achieve fast line current dynamics. The source currents only are measured in the proposed control scheme instead of both the source and load currents needed in the conventional control approach. A simple proportional-integral control is adopted in the voltage loop to achieve slow dc bus dynamics. The proposed control strategy can achieve a high power factor and low current harmonics. No dedicated APF is needed in the proposed control strategy. To demonstrate the effectiveness of the integrated power factor compensator for elimination of reactive power and current harmonics, software simulation and hardware tests are performed.  相似文献   

13.
A new hybrid active power filter (APF) topology   总被引:12,自引:0,他引:12  
In this paper, a new hybrid active power filter topology is presented. A higher-voltage, low-switching frequency insulated gate bipolar transistor (IGBT) inverter and a lower-voltage high-switching frequency metal oxide semiconductor field effect transistor (MOSFET) inverter are used in combination to achieve harmonic current compensation. The function of the IGBT inverter is to support utility fundamental voltage and to compensate for the fundamental reactive power. The MOSFET inverter fulfills the function of harmonic current compensation. To further reduce cost and to simplify control, the IGBT and MOSFET inverters share the same DC-link via a split capacitor bank. With this approach harmonics can be cancelled over a wide frequency range. Compared to the conventional APF topology, the proposed approach employs lower dc-link voltage and generates less noise. Simulation and experimental results show that the proposed active power filter topology is capable of compensating for the load harmonics  相似文献   

14.
A real-time current controller for PWM inverter-fed permanent-magnet synchronous motor drives is presented and analyzed. The proposed current control scheme is based on predictive control with a parallel integral loop added to compensate for the inaccuracy of the motor model and for the variations of motor parameters and DC voltage source. The proposed current control scheme is analyzed and its performance is evaluated by computer simulation. An EPROM-based implementation is presented in which calculations and pulsewidth modulation are executed by lookup tables resulting in high-speed operation. The controller performance is evaluated using a prototype l kW PM synchronous servo drive. Experimental results are given and discussed  相似文献   

15.
This paper deals with the hardware implementation of a shunt active filter (SAF) for compensation of reactive power, unbalanced loading, and harmonic currents. SAF is controlled using an adaptive-linear-element (Adaline)-based current estimator to maintain sinusoidal and unity-power-factor source currents. Three-phase load currents are sensed, and using least mean square (LMS) algorithm-based Adaline, online calculation of weights is performed and these weights are multiplied by the unit vector templates, which give the fundamental-frequency real component of load currents. The dc bus voltage of voltage source converter (VSC) working as a SAF is maintained at constant value using a proportional–integral controller. The switching of VSC is performed using hysteresis-based pulsewidth-modulation indirect-current-control scheme, which controls the source currents to follow the derived reference source currents. The practical implementation of the SAF is realized using dSPACE DS1104 R&D controller having TMS320F240 as a slave DSP. The MATLAB-based simulation results and implementation results are presented to demonstrate the effectiveness of the SAF with Adaline-based control for load compensation.   相似文献   

16.
The paper presents a new digital control scheme for the line side converter of an AC electric traction drive. The significant feature of the structure is a new kind of current controller, which satisfies an almost ideal sinusoidal current waveshape, even at distorted line voltage. Due to its modular structure the control system is well suited for converters working at high (IGBT) as well as with low (GTO) switching frequencies.  相似文献   

17.
A boost-cascaded-with-buck converter-based power conditioning system employing a seamless mode transfer maximum power point tracking controller is proposed to maximize energy production of a thermoelectric generator while balancing a vehicle battery, alternator output power, and vehicle load. When a vehicle battery is fully charged, the proposed controller switches to a power matching mode seamlessly by a dual loop control system, which detects the input and output voltages and currents of the boost-cascaded-with-buck converter, and adjusts the commands accordingly. Both voltage and current loops are designed in a frequency domain using small signal models to ensure stable operation. A mode selection and voltage and current commands are determined by a digital signal processor-based controller. The experimental results with a dynamic source and load steps are presented to show the effectiveness of the proposed approach.   相似文献   

18.
This paper introduces a new controller for a threephase inverter, with a control goal of generating desired threephase output voltages. The proposed controller employs a circuit-level decoupling method, and it is implemented by logic circuitry in combination with a control core and a feedback signal processor. Almost all DC-DC controllers can be adapted as the control core, whereas the feedback signal processor can be implemented by either voltage compensator and/or current compensator. The controller's implementation is simple and flexible with logic and analog circuitry. Yet, it demonstrates experimentally excellent load handling, source voltage noise rejection, and reference tracking ability. The prototype is tested under resistive load, highly nonlinear load, and extreme load transients; aside from that, it is also tested under noisy source voltage and sudden reference change. In all cases, the prototype demonstrated high-quality output voltages.  相似文献   

19.
Shunt active power filters are connected in parallel with the electricity supply network. If the AC mains has a neutral conductor, it is desirable to compensate the mains harmonic currents zero-sequence components. This can be achieved with a four-wire pulsewidth modulation voltage converter connected to the AC mains. In this case, the three-phase and the neutral AC currents must be controlled. A generalization of the space-vector-based current controller in the αβo coordinate system is presented in this paper. With this current controller, all the current harmonic systems of positive, negative, and zero sequence can be injected by the converter and, thus, compensated on the AC mains. The system is also useful to compensate unbalanced currents of fundamental frequency. A useful benefit of this system is that it is possible to control the converter four-wire currents with equal hysteresis errors. Simulation and experimental results are presented  相似文献   

20.
A series active power filter working as a sinusoidal current source, in-phase with the mains voltage, has been developed and tested. The amplitude of the fundamental current in the series filter is controlled through the error signal generated between the load voltage and a pre-established reference. The control allows an effective correction of power factor, harmonic distortion and load voltage regulation. Compared with previous methods of control developed for series active filters, this method is simpler to implement because it is only required to generate a sinusoidal current, in-phase with the mains voltage, the amplitude of which is controlled through the error in the load voltage. The proposed system has been studied analytically and tested using computer simulations and experiments. In the experiments, it has been verified that the filter keeps the line current almost sinusoidal and in-phase with the line voltage supply. It also responds very quickly under sudden changes in load conditions, reaching its steady-state in about two cycles of the fundamental  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号