首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular endothelial growth factor (VEGF) is an angiogenic factor, and its expression has been rarely demonstrated in thyroid tumors. We, therefore, investigated the expression of VEGF messenger RNA (mRNA) and production of VEGF protein in cell lines from human primary and metastatic follicular (FTC-133, FTC-236, and FTC-238), papillary (TPC-1), Hürthle cell (XTC-1), and medullary thyroid cancers (MTC-1.1 and MTC-2.2), and in human thyroid tissues (papillary, follicular, medullary, and Hürthle cell cancers, follicular adenomas, and Graves' thyroid tissue) by Northern blot, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) studies. All thyroid cell lines expressed a 4.2-kilobase VEGF mRNA. The VEGF mRNA levels were higher in the thyroid cancer cell lines than in primary cultures of normal thyroid cells, and higher in thyroid cancers of follicular than those of parafollicular cell origin. The VEGF mRNA levels were similar in primary and metastatic thyroid tumors. Immunohistochemical staining and Northern blot analysis of the cell lines correlated positively, thus thyroid cancer cell lines stained more intensely than normal thyroid cells and follicular tumor cells more intensely than parafollicular tumor cells. Again, no difference was noted in VEGF staining between primary and metastatic thyroid tumors. Deparafinized sections of papillary, follicular, and Hürthle cell cancers also stained much stronger than those of medullary thyroid cancers, benign, or hyperplastic (Graves' disease) thyroid tissue. Thyroid cancer cell lines (XTC-1 > TPC-1 > FTC-133 > MTC-1.1) also secreted more VEGF protein as measured by ELISA than did normal thyroid cells. VEGF secretion of cell lines derived from primary and metastatic thyroid tumors were similar. VEGF mRNA is therefore expressed, and VEGF protein is secreted by normal, hyperplastic, and neoplastic thyroid tissues. The higher levels of VEGF expression in differentiated thyroid cancers of follicular cell origin suggests a role in oncogenesis.  相似文献   

2.
Thyroid carcinomas no longer accessible to radio-iodide or TSH-suppressive T4 therapy, due to loss of thyroid-specific functions, might be sufficiently re-differentiated by retinoic acid (RA) to be treated by conventional methods again. To help evaluate the feasibility of RA re-differentiation therapy in thyroid carcinomas, we examined the functionality of RA receptors (RARs/RXRs), central RA signal mediators, in human thyroid-carcinoma cell lines as model systems. [3H]-RA binding assays with nuclear extracts from follicular thyroid-carcinoma cell lines FTC-133 and -238 revealed high-affinity binding sites for RA. Electrophoretic mobility shift and super-shift assays using a DR2 ("direct repeat" 2) RA response element demonstrated DNA-binding of RARalpha, RARgamma, RXRalpha and RXRbeta in nuclear extracts of FTC-133 and anaplastic HTh74 cells. Use of a DR5 RA response element revealed no difference in DNA binding. In supershift assays with a DR4 T3 response element, we found DNA-binding by TRalpha1, TRalpha2, and TRbeta. Northern-blot analysis showed low expression of RXRbeta mRNA in FTC-133 and of TRalpha1 mRNA in FTC-133 and FTC-238 cells. Using RT-PCR, we detected mRNA for RARalpha, RARbeta, RARgamma, RXRalpha, and RXRbeta in the 4 cell lines and in human thyroid-carcinoma samples. RARbeta mRNA was reduced in FTC-238 cells and RXRbeta mRNA was decreased in anaplastic C643 cells and 9 of 12 tumor samples. Differential RA regulation of RA-receptor-mRNA expression was observed in the various cell lines. Thus, RA and T3 nuclear receptors are present in thyroid-carcinoma cell lines or tissues, albeit with cell-line and tumor-dependent variations; in the cell lines, they were shown to be functional with respect to DNA and/or ligand binding.  相似文献   

3.
Decreased iodide uptake in de-differentiated thyroid carcinomas impedes radioiodide therapy. RTPCR analysis revealed reduced expression of Na+/I- symporter (NIS) mRNA in human thyroid carcinomas as compared to normal thyroid. However, in follicular thyroid carcinoma cell lines FTC-133 and FTC-238, treatment with 1 microM all-trans retinoic acid (RA) markedly increased NIS mRNA levels. Anaplastic thyroid carcinoma cell lines HTh74 and C643 showed basal expression of NIS mRNA, but no RA-stimulation. All four cell lines contained the approximately 80 kD NIS protein as judged by Western blot, although they did not accumulate iodide. In contrast, in nontransformed rat FRTL-5 cells, 1 microM RA downregulated NIS mRNA levels, inhibited the TSH- or forskolin-triggered induction of NIS message after TSH-depletion, and reduced iodide uptake to 38% after 5 d. This divergent RA-responsivity of NIS may provide the means to target radioiodide to thyroid carcinomas by upregulating iodide transport into tumor tissue while simultaneously inhibiting iodide accumulation in normal thyrocytes and may thus re-establish the potential for radioiodide therapy.  相似文献   

4.
A 22-year-old woman with recurrent goiter, hyperthyroidism, galactorrhea, and amenorrhea due to a pituitary tumor is described. She had been treated surgically twice for recurrent goiter with tracheal compression. Despite clinical signs of hyperthyroidism and slightly elevated plasma thyroid hormone levels (T4: 11 mug/dl; T3: 189 ng/dl), without thyroid hormone replacement therapy the basal TSH level was elevated up to 23 muU/ml and could not be suppressed by exogenous thyroid hormones: even when the serum thyroid hormone levels were raised into the thyrotoxic range (T4: 16.2 mug/dl T3: 392 ng/dl), the basal TSH fluctuated between 12 and 29 muU/ml. The basal PRL level was elevated up to 6000 muU/ml. The administration of TRH (200 mug iv) led only to small increments of TSH and PRL levels. Bromocriptin (5 mg p.o.) or l-dopa (0.5 g p.o.) suppressed TSH and PRL values significantly. After transsphenoidal hypophysectomy, TSH and PRL were below normal and the patient development panhypopituitarism. The adenoma showed two cell types which could be identified as lactotrophs and thyrotrophs by electronmicroscopy and immunofluorescence. From these data we conclude that the patient had a pituitary tumor with an overproduction of thyrotropin and prolactin.  相似文献   

5.
Vascular endothelial growth factor (VEGF) is one of the angiogenic factors. We examined both thyroid volume and intrathyroidal vascular area by color flow Doppler ultrasonography in patients with Graves' disease (GD), Hashimoto's thyroiditis (HT), and subacute thyroiditis. The serum concentrations of thyroid hormones, TSH, TSH receptor antibodies, and VEGF were also examined. There was a significant increase in serum VEGF levels in patients with untreated GD and goitrous HT compared with those in healthy subjects. The serum VEGF levels in untreated patients with subacute thyroiditis were significantly higher than those in patients with untreated GD or HT. There was a significant correlation between serum VEGF levels and the ratio of intrathyroidal vascular area and thyroid area in untreated patients with GD who had a goiter larger than or equal to 40 cm3. There was also a significant correlation between serum VEGF and TSH levels in patients with HT who were hypothyroid and had a goiter. Serum VEGF levels decreased significantly in these patients after treatment; this was accompanied by a significant decrease in intrathyroidal vascular area and thyroid volume. Our study demonstrates that VEGF appears to play an important role in intrathyroidal angiogenesis in patients with GD and goitrous HT.  相似文献   

6.
A clinically euthyroid 2-yr-old girl was found to have diffuse goiter that measured 3 X 5.5 cm with a prominent systolic bruit. Serum free T4 (3.4 ng/dl) and serum T3 (360 ng/dl) remained elevated for the next 10 months even though she remained clinically euthyroid. Elevation of serum free T4 (3.0 ng/dl) and serum T3 (265 ng/dl) was also present in the 24-yr-old nongoitrous mother who had symptoms and signs of hypothyroidism. Following intravenous injection of TRH, basal TSH levels of 2.7 and 2.8 microunits/ml increased to peak values of 17 and 21 microunits/ml at 30 min in the daughter and mother, respectively. Administration of exogenous T3 followed by sequential testing with boluses of TRH revealed retention of TSH responsiveness in both daughter and mother during pretreatment with dosage regimens of T3 below 125 micrograms daily. Maintenance of TSH responsiveness to TRH in the presence of elevated levels of serum free T4 and serum T3 indicates relative pituitary insensitivity to thyroid hormone which could be overridden by increasing the circulating levels of serum T3 three to fivefold over the already elevated basal levels. The absence of clinical signs of thyrotoxicosis indicates peripheral insensitivity to thyroid hormone with elevated circulating concentrations presumptively compensating for the defect. Resistance to thyroid hormone in two generations of the same family suggests genetic inheritance, and is concordant with four earlier reports of familial aggregation in this syndrome.  相似文献   

7.
Because some papillary thyroid cancers continue to grow when thyroid-stimulating hormone (TSH) levels are suppressed, we questioned whether desensitization (i.e., a decreased cAMP response to repeat stimulation with TSH) occurs in normal and neoplastic thyroid tissue. If desensitization does occur, is it similar or different in these human thyroid cells? Normal and papillary thyroid cancer cells from the same patient were cultured as we have previously described. Normal and neoplastic thyroid tissues responded to TSH (0.01-10.0 mU/ml) by increasing cAMP production and growth in a dose-dependent manner. In normal cells there was an 11-fold mean increase in cAMP production at 4 hours, and all thyroid cultures responded. In neoplastic cells cAMP production increased from 1.5-fold to 3.0-fold with a mean 2.0-fold increase at 4 hours. In normal thyroid cells the cAMP response to a second TSH stimulus (desensitization) decreased up to 75% (range 25-75%), and desensitization occurred in all normal thyroid cell cultures. In neoplastic thyroid cells, however, the cAMP response to a second TSH stimulus decreased up to 17% (range 0-17%); and desensitization occurred in only two of the five neoplastic thyroid cell cultures. Thus when normal thyroid and neoplastic cells from the same patients were studied, greater desensitization occurred in the normal cells (75% vs. 17%). These studies document that there is greater desensitization in normal tissue than in neoplastic thyroid tissue, which may account for the increased growth of thyroid neoplasms in the presence of ever-changing low levels of TSH.  相似文献   

8.
Vascular permeability factor/vascular endothelial cell growth factor (VPF/VEGF) can both potently enhance vascular permeability and induce proliferation of vascular endothelial cells. We report here that mouse or human mast cells can produce and secrete VPF/VEGF. Mouse mast cells release VPF/VEGF upon stimulation through Fcepsilon receptor I (FcepsilonRI) or c-kit, or after challenge with the protein kinase C activator, phorbol myristate acetate, or the calcium ionophore, A23187; such mast cells can rapidly release VPF/VEGF, apparently from a preformed pool, and can then sustain release by secreting newly synthesized protein. Notably, the Fc epsilonRI-dependent secretion of VPF/VEGF by either mouse or human mast cells can be significantly increased in cells which have undergone upregulation of Fc epsilonRI surface expression by a 4-d preincubation with immunoglobulin E. These findings establish that at least one cell type, the mast cell, can be stimulated to secrete VPF/VEGF upon immunologically specific activation via a member of the multichain immune recognition receptor family. Our observations also identify a new mechanism by which mast cells can contribute to enhanced vascular permeability and/or angiogenesis, in both allergic diseases and other settings.  相似文献   

9.
Angiogenesis is essential for tumor growth and metastasis and depends on the production of angiogenic factors by host and/or tumor cells. The role of angiogenesis and angiogenic factor expression in intestinal- and diffuse-type gastric cancer are undefined. Archival specimens of 51 intestinal-type and 38 diffuse-type human gastric carcinomas were examined for tumor vessel counts, angiogenic factor expression, and the presence or absence of angiogenic factor receptors on tumor endothelium using antibodies against vascular endothelial growth factor (VEGF) and its receptors (KDR and flt-1), basic fibroblast growth factor (bFGF) and its receptors (bek and flg), and factor VIII (endothelial cells). Vessel count and VEGF and bFGF expression were higher in intestinal-type than in diffuse-type gastric cancers (P = 0.01, P < 0.001, and P < 0.001, respectively). Similarly, vessel count and VEGF expression were higher in patients with liver metastasis than in patients with peritoneal dissemination (P = 0.003 and P = 0.01, respectively). Vessel count correlated with VEGF expression and the presence of endothelial KDR in intestinal-type gastric cancer (P = 0.003 and P = 0.02, respectively) but not diffuse-type gastric cancer. Vessel count, VEGF expression, and presence of endothelial KDR increased with increasing stage of disease in intestinal-type gastric cancer but not diffuse-type gastric cancer. The expression of bFGF and its receptors did not correlate with vessel count in either cancer type. These findings suggest that the pattern of metastasis in intestinal-type gastric cancer is angiogenesis dependent. The correlation of VEGF expression and its endothelial receptor with vessel count and stage of disease suggests that VEGF is at least one of the factors responsible for the induction of angiogenesis in intestinal-type gastric cancer.  相似文献   

10.
11.
12.
13.
The stimulatory effect of TA-0910 on the secretions of thyroid-stimulating hormone (TSH) and thyroid hormones was investigated in male and female rats. Single intravenous administration of TA-0910 at 8.3 nmol/body acutely elevated the plasma TSH level, with delayed and moderate increases of T3 and T4 in plasma. Similar increments of plasma TSH and thyroid hormones were observed when TRH was injected at the dose of 0.83 nmol/body. Oral administration of TA-0910 at 2.75 mumol/body was equally potent or slightly more potent to secrete TSH than TRH at 0.275 mumol/body. The elevated TSH by TA-0910 decreased to the control level within 2 hr after intravenous injection or within 6 hr after oral administration; on the other hand, the higher levels of the thyroid hormones were retained for up to 4 and 6 hr after intravenous and oral administration, respectively. These findings indicate that TA-0910 and TRH stimulate the secretion of TSH and thyroid hormones by a similar manner and that the TSH-secreting activity of TA-0910 is lower by an order of magnitude compared with that of TRH.  相似文献   

14.
To characterize the role of TRH in the generation of TSH pulsatility as well as the effect of hypothyroidism on episodic GH secretion, blood was constantly withdrawn (30-60 microliters/min) from rats treated with 0.02% methimazole in the drinking water for 8-10 days. This treatment significantly reduced circulating levels of both T3 and T4 and elevated plasma TSH; however, since thyroid hormone titers were still detectable (T3, 39.6 +/- 5.3 vs. 89.8 +/- 5.3 ng/dl in euthyroid animals), methimazole-treated rats were referred to as being mildly hypothyroid. TSH was found to be secreted in secretory bursts, consisting of one to several peaks in these rats. Pulsar analysis of TSH secretory profiles revealed a mean pulse frequency of 2.8 pulses/h, a mean pulse amplitude of 10 ng/pulse, and a mean pulse duration of 0.2 h. Euthyroid rats exhibited similar fluctuations of circulating TSH levels; however, due to the variability of the TSH RIA in the range of euthyroid TSH titers, no significant pulsatility was detected by Pulsar. Mean plasma TSH levels in eu- and hypothyroid rats were 2.3 +/- 0.3 and 14.6 +/- 1.8 ng/ml, respectively. To confirm that the TRH antiserum (TRH-AS) used in the present study for passive immunization had sufficient binding capacity to absorb endogenous TRH release, euthyroid rats were pretreated with either normal rabbit serum or TRH-AS, followed by the injection of clonidine (100 micrograms/kg BW, iv). This alpha 2-adrenergic agonist caused a significant (P < 0.01) 12.7-fold rise in plasma TSH levels in normal rabbit serum-treated animals, which was completely abolished by TRH-AS pretreatment, indicating that clonidine stimulates TSH secretion via activation of hypothalamic TRH release. When TRH-AS was slowly infused into hypothyroid rats that were sampled frequently for the detection of TSH pulsatility, it caused a significant (60.3%; P < 0.01) decrease in mean TSH levels, with TSH titers approaching euthyroid concentrations 1 h after the infusion of TRH-AS. The antiserum treatment also caused the disappearance of statistically significant (Pulsar) TSH secretory pulses. Mild hypothyroidism shifted the GH secretory profiles from a low frequency, high amplitude in euthyroid animals to a high frequency, low amplitude pattern in hypothyroid rats. Mean GH levels in hypothyroid rats were 76% lower than those in euthyroid controls. These findings show that TSH is secreted in a pulsatile fashion in the hypothyroid rat and that TRH is predominantly responsible for the generation of TSH pulsatility.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Hürthle cell carcinomas (HCC) of the thyroid are a variant of follicular thyroid tumors. In contrast to follicular thyroid carcinoma, HCC rarely take up radioiodine and frequently metastasize to the lymph nodes. Histologically they are indistinguishable from Hürthle cell adenomas except for evidence of invasion and metastasis. How these carcinomas develop and why they behave differently than other follicular tumors is not known. Although some differentiated thyroid cancer cell lines exist, none are from Hürthle cell tumors. We have established a well-differentiated thyroid cancer cell line from a metastasis of a HCC, designated XTC.UC1. In vitro, XTC cells display epitheloid morphology, grow with a population doubling time of 4.3 +/- 0.3 days, migrate, and invade through reconstituted basement membranes. The cells are immunoreactive for and release thyroglobulin, respond to thyrotropin (TSH) with increase of intracellular cyclic adenosine monophosphate (cAMP), proliferation, and invasion of reconstituted basement membrane, thus exhibiting characteristics of well-differentiated thyroid carcinoma. In vivo, xenografted XTC cells grow with a doubling time of 9.8 +/- 0.8 days. Tumors spontaneously metastasize to the lymph nodes and less frequently to the lungs and the liver. The cells retained their differentiated function in vivo as assessed by human thyroglobulin (hTG) secretion and immunohistochemistry. This is a first report of the establishment of a unique, highly differentiated thyroid carcinoma cell line derived from an HCC. Based on the ability to invade through reconstituted basement membrane in vitro and the potential to metastasize in vivo, this cell line may provide a unique model to study invasion and metastazation of well-differentiated thyroid cancer.  相似文献   

16.
Fifteen IDDM patients were evaluated for thyroid hormone abnormalities before and after control of diabetes mellitus/ketoacidosis. Blood sugar mean +/- SEM mg/dl on admission was 430 +/- 20.3 and after therapy fasting and post prandial blood sugar values were 120 +/- 14.5 and 150 +/- 20.2 respectively. GHb mean +/- SEM % on admission was 15.2 +/- 0.36. Serum T3 mean +/- SEM ng/dl of 0.36 +/- 0.04 was in hypothyroid range and rT3 mean +/- SEM ng/ml 0.40 +/- 0.6 was significantly raised (P < 0.001) before therapy. After metabolic control both T3 and rT3 became normal. T4 concentration mean +/- SEM meg/dl of 5.5 +/- 0.7 was well within normal range before therapy and rose to mean +/- SEM mcg/dl 8.8 +/- 0.5 after therapy (P < 0.01). TSH response to TRH was blunted in uncontrolled state. It is concluded that peripheral changes in T3, T4 and rT3 (low T3, high rT3 and low or normal T4) occurred in uncontrolled diabetic state during ketoacidosis. TSH response to TRH was blunted due to suppression of hypothalamic pituitary thyroid axis which takes more than a week for complete recovery.  相似文献   

17.
In this study, we examined whether human glioma cells are angiogenic in a model using human microvascular endothelial cells, and also which factor is responsible for the glioma-dependent angiogenesis. Tubular morphogenesis in type I collagen gel by human microvascular endothelial cells was stimulated in the presence of 10 and 100 ng/ml of vascular endothelial growth factor (VEGF), 10 ng/ml basic fibroblast growth factor (bFGF) and 10 ng/ml of interleukin-8 (IL-8). Tube formation of the microvascular endothelial cells was assayed in the glioma cell lines IN157 and IN301, co-cultured using the double chamber method. IN301 cells had much higher levels of VEGF, bFGF and transforming growth factor-beta mRNA than IN157 cells, whereas the two had similar levels of transforming growth factor-alpha mRNA. By contrast, IN157 cells had much higher levels of IL-8 mRNA than IN301 cells. IN301-dependent tubular morphogenesis was inhibited by anti-VEGF or anti-bFGF antibody, and the inhibition was almost complete when anti-VEGF and anti-bFGF antibodies were present. On the other hand, IN157-dependent tubular morphogenesis was inhibited by anti-IL-8 antibody, but not by anti-VEGF or anti-bFGF antibodies. These findings demonstrated dual paracrine controls of tumor angiogenesis by human glioma cells. One is mediated through VEGF and/or bFGF, and the other, through IL-8.  相似文献   

18.
Although the importance of the vascular endothelial growth factor (VEGF)/VEGF tyrosine kinase receptor (VEGFR) system in angiogenesis is well established, very little is known about the regulation of VEGFR expression in vascular endothelial cells. We have cloned partial cDNAs encoding bovine VEGFR-1 (flt) and -2 (flk-1) and used them to study VEGFR expression by bovine microvascular- and large vessel-derived endothelial cells. Both cell lines express flk-1, but not flt. Transforming growth factor beta 1 (TGF-beta 1) reduced the high affinity 125I-VEGF binding capacity of both cell types in a dose-dependent manner, with a 2.0-2.7-fold decrease at 1-10 ng/ml. Cross-linking experiments revealed a decrease in 125I-VEGF binding to a cell surface monomeric protein corresponding to Flk-1 on the basis of its affinity for VEGF, molecular mass (185-190 kDa), and apparent internalization after VEGF binding. Immunoprecipitation and Western blot experiments demonstrated a decrease in Flk-1 protein expression, and TGF-beta 1 reduced flk-1 mRNA levels in a dose-dependent manner. These results imply that TGF-beta 1 is a major regulator of the VEGF/Flk-1 signal transduction pathway in endothelial cells.  相似文献   

19.
We studied the effect of tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), and interferon-gamma (IFN-gamma) on the function of thyroid cells and pituitary thyrotrophs. In FRTL-5 rat thyroid cells, both human and murine TNF-alpha inhibited basal and TSH-stimulated [125I]iodide transport. IL-1 shared this action with TNF-alpha, but was less potent. IL-1 and IFN-gamma did not cause a further reduction of TNF-alpha-induced inhibition of [125I]iodide transport. TNF-alpha, phorbol ester 12-myristate 13-acetate (PMA), and calcium ionophore (CI) A23817 all inhibited [125I]iodide transport, but high doses of PMA and CI also blocked the inhibitory action of TNF-alpha on [125I]iodide transport. Inhibition of protein kinase A and protein kinase C by H7 or HA inhibited TSH-stimulated iodide transport, but did not block the TNF-alpha action, suggesting that the mechanism of TNF-alpha action on thyroid cells is independent of protein kinase A and C. In pituitary cells, both human and murine TNF-alpha did not affect basal TSH secretion, but TNF-alpha reduced TRH-stimulated TSH secretion. This study provides further in vitro evidence that TNF-alpha inhibits the function of the hypothalamus-pituitary-thyroid axis acting directly on both the pituitary and thyroid glands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号