首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-performance and low-cost single-switch current-fed energy recovery circuit (ERC) for an alternating current (ac) plasma display panel (PDF) is proposed. Since it is composed of only one power switch compared with the conventional circuit consisting of four power switches and two large energy recovery capacitors, it features a much simpler structure and lower cost. Furthermore, since all power switches can be switched under soft-switching operation, the proposed circuit has desirable merits such as an increased reliability, and low switching loss. Especially, there are no serious voltage notches across the PDP with the aid of gas discharge current compensation, which can greatly reduce the current stress of all inverter switches, and provide those switches with the turn on timing margin. To confirm the validity of the proposed circuit, its operation and performance were verified on a prototype for 7-in test PDP.  相似文献   

2.
An improved dual-path energy recovery circuit (ERC) using a current source and a voltage source for plasma display panel (PDP) is proposed. The proposed ERC uses the voltage source to charge a panel and the current source to discharge the panel. Thus, the proposed circuit can make the panel charge to a sustaining voltage $V_{S}$ and fully discharge to 0 V, and it is possible to achieve zero-voltage switching for all switches in an H-bridge inverter and zero-current switching for all switches in the ERC. Moreover, it has less conduction and switching loss in ERC devices by the dual energy recovery paths for charging and discharging the panel. Furthermore, it has the features of canceling the gas discharge current, high performance, and the low-cost ERC components. The operation principle and features of the proposed ERC are presented in detail and verified with 42-in standard definition (SD) PDP.   相似文献   

3.
This paper proposes a novel single sustaining driver with half the device voltage stresses for plasma display panel (PDP). Since proposed driver lowers the voltage stress of sustain switches by series-connected configuration of switches and clamping capacitor between switches, it uses half voltage rating of sustain switches and, thus, reduces the conduction loss of power switches compared with those of the conventional single sustaining driver. Despite device count possibly increasing, by using low voltage switches and capability to produce zero voltage level in sustaining inverter, the circuit cost does not increase compared with the conventional. In addition, the proposed driver has two energy recovery inductors that are utilized to separate the energy recovery path. This feature reduces the power loss of energy recovery circuit (ERC), which gives an improvement in system efficiency. A comparative analysis and experimental results are presented to show the validity of the proposed single sustaining driver.  相似文献   

4.
周吉鹏  曹允  孙伟峰  吴建辉   《电子器件》2007,30(2):518-522
等离子显示器在没有能量恢复电路的情况下,功耗很大,不能广泛实用,因此能量恢复电路是驱动电路中至关重要的部分.能量恢复电路中的高压开关MOSFET的硬开关问题,会导致PDP电路中的较大的放电电流,增大电磁干扰(EMI),影响整机性能.硬开关问题是近年来PDP电路研究的重点之一.本文通过对经典能量恢复电路及其寄生效应进行理论分析,指出电路及其元件中的寄生效应是电路中主要MOSFET产生硬开关问题的主要原因,由此分析了研究了改进这一问题的几种方法.  相似文献   

5.
Han  S.-K. Youn  M.-J. 《Electronics letters》2004,40(17):1058-1060
A new energy-recovery sustaining driver for an AC plasma display panel (PDP) is proposed. Since it has only one auxiliary switch compared with the four of the prior circuit, its size and cost can be greatly reduced. Moreover, it features the fast transition time of the panel polarity, fully charged and discharged PDP and soft switching of all power switches.  相似文献   

6.
A new high performance series-resonance energy-recovery circuit (ERC) for a plasma display panel (PDP) is proposed. Two different ERCs are used for both sides of the PDP, and the slow falling and fast rising times are employed. Therefore, it features the zero voltage switching, low electromagnetic interference, low current stress, no severe voltage notch, and high energy-recovery capability.  相似文献   

7.
A resonant energy-recovery circuit for a plasma display panel (PDP) employing a gas-discharge current compensation method is proposed. Its main concept is to make the resonant circuit biased by V/sub s/ and 0V instead of V/sub s//2 in charging and discharging the PDP, respectively. This operation helps the PDP to be fully charged and discharged and all main switches turned on under zero-voltage switching. Moreover, since the inductor current can compensate the large gas-discharge current, the current stresses on main power switches can be considerably reduced and all main switches have the turn-on timing margin, which ensures the no voltage drop across the PDP. Therefore, all these features could favorably provide a high energy-recovery capability, more accumulated wall charge, reduced sustaining voltage, and low electromagnetic interference. Therefore, the proposed circuit is expected to be well suited for a hang-on-the-wall PDP TV.  相似文献   

8.
A new pulsewidth modulation (PWM)-controlled quasi-resonant converter for a high-efficiency plasma display panel (PDP) sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the primary resonant capacitor with a bidirectional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good zero-voltage switching (ZVS) capability, simple control circuits, no hign-voltage ringing problem of rectifier diodes, no dc offset of the magnetizing current and low-voltage stresses of power switches. Thus, the proposed converter shows higher efficiency than that of a half-bridge LLC resonant converter under light load condition. Although it shows the lower efficiency at heavy load, because of the increased power loss in auxiliary circuit, it still shows the high efficiency around 94%. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.   相似文献   

9.
A new cost-effective zero-voltage and zero-current switching (ZVZCS) current-fed energy-recovery display driver for a plasma display panel (PDP) is proposed. It features a simpler structure, less mass, and lower cost of production. Furthermore, since all power switches are turned on or off under zero-voltage or zero-current switching, it has several favorable advantages such as an improved electromagnetic interference (EMI), low switching losses, and reduced burden on the cooling system. Particularly, since the current source built in the inductor can compensate the large gas-discharge current, main inverter switches have the reduced current stress and turn-on timing margin. Therefore, the undesirable voltage notch problem caused by the improperly controlled gate signal can be solved, which enables the panel to light at lower voltage such as 143 V compared with about 165 V of the prior circuit. To confirm the operation, validity, and features of the proposed circuit, experimental results from a prototype built with 6-in test PDP are presented.  相似文献   

10.
A new zero-voltage and zero-current switching (ZVZCS) energy-recovery circuit (ERC) for a plasma display panel (PDP) is proposed. The external current source ensures the zero-voltage turn-on of all MOSFETs, zero-current turn-off of all IGBTs, and fully charged/discharged PDP, which desirably reduce the sustaining voltage. Moreover, it features simpler structure, fewer devices, lower cost, lower electromagnetic interference noise, and lower current stress.  相似文献   

11.
This paper presents a cost-effective sustain power conversion scheme for the plasma display panel (PDP). A new energy-recovery (ER) circuit is proposed for a low-cost sustain driver. As a parallel-resonant type ER circuit, it can recover the energy stored in the PDP without the interconnection of the sustaining and scanning electrodes. It has a simple structure and fewer power devices, providing a lower cost of production. In addition, a high efficiency sustain power supply is proposed to provide a constant sustain voltage for the sustain driver. It achieves zero-current turn-off of the output diode, alleviating the diode reverse-recovery problems. The sustain power efficiency is increased by reducing the switching power loss. Therefore, the cost and power consumption of the PDP can be improved. The proposed circuits are theoretically analyzed in detail. The experimental results based on a 32-in PDP are presented to confirm the validity of the proposed circuits.  相似文献   

12.
A new active clamping zero-voltage switching (ZVS) pulse-width modulation (PWM) current-fed half-bridge converter (CFHB) is proposed in this paper. Its active clamping snubber (ACS) can not only absorb the voltage surge across the turned-off switch, but also achieve the ZVS of all power switches. Moreover, it can be applied to all current-fed power conversion topologies and its operation as well as structure is very simple. Since auxiliary switches in the snubber circuit are switched in a complementary way to main switches, an additional PWM IC is not necessary. In addition, it does not need any clamp winding and auxiliary circuit besides additional two power switches and one capacitor while the conventional current-fed half bridge converter has to be equipped with two clamp windings, two ZVS circuits, and two snubbers. Therefore, it can ensure the higher operating frequency, smaller-sized reactive components, lower cost of production, easier implementation, and higher efficiency. The operational principle, theoretical analysis, and design considerations are presented. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 200-W, 24-200Vdc prototype are presented.  相似文献   

13.
A new sustaining driver for a plasma display panel (PDP) employing a gas-discharge current compensation method is proposed. It features a high performance, zero-voltage-switching, high efficiency, low EMI and high energy-recovery capability. Furthermore, since it compensates for the large gas-discharge current, it enables the PDP to light at a lower voltage than the prior circuit.  相似文献   

14.
A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) pulse width modulation (PWM) converter is proposed to improve the demerits of the previously presented ZVZCS-FB-PWM converters, such as use of lossy components or additional active switches. A simple auxiliary circuit which includes neither lossy components nor active switches provides ZVZCS conditions to primary switches, ZVS for leading-leg switches and ZCS for lagging-leg switches. Many advantages including simple circuit topology, high efficiency, and low cost make the new converter attractive for high power (>2 kW) applications. The operation, analysis, features and design considerations are illustrated and verified on a 2.5 kW, 100 kHz insulated gate bipolar transistor (IGBT) based experimental circuit  相似文献   

15.
A new energy-recovery circuit for a plasma display panel (PDP) is proposed. It features a simpler structure, less mass, higher efficiency, and fewer devices. The very stable and uniform light emitted from a PDP proves the high quality of the screen. It is suitable for hang-on-the-wall TVs which have desirable features such as thinness, lightness, high efficiency, and low price  相似文献   

16.
A new zero-voltage and zero-current-switching (ZVZCS) full-bridge (FB) pulse width modulation (PWM) power converter is proposed to improve the performance of the previously presented ZVZCS FB PWM power converters. By adding a secondary active clamp and controlling the clamp switch moderately, ZVS (for leading-leg switches) and ZCS (for lagging-leg switches) are achieved without adding any lossy components or the saturable reactor. Many advantages, including simple circuit topology, high efficiency and low cost, make the new power converter attractive for high-voltage and high-power (>10 kW) applications. The principle of operation is explained and analyzed. The features and design considerations of the new power converter are also illustrated and verified on a 1.8 kW 100 kHz IGBT-based experimental circuit  相似文献   

17.
A novel driver with discharge current compensation is proposed to drive an AC plasma display panel (PDP). This proposed circuit uses resonance between the inductor and the AC PDP to avoid abrupt charging/discharging. The four switches of the full bridge are all operated with zero-voltage-switching turn-on. In addition, an 8-in AC PDP equipped with the proposed driving circuit, operating at 100 kHz, is investigated. With the discharge current compensation, the experimental results show that the proposed driver can maintain the AC PDP to light at lower voltage (129 V)  相似文献   

18.
A new concept of energy recovery for a plasma display panel (PDP) is proposed. Different from conventional LC resonant sustaining drivers, the current built up before inverting the polarity of the panel electrodes is utilized to change the panel polarity together with energy previously charged in panel capacitance. This operation provides zero-voltage switching of switches and reduction of electromagnetic interference by rejecting the surge current when the sustain switches are turned on. The buildup current helps to reduce the transition time of the panel polarity and may produce more stable light waveforms. This method is suitable for a PDP sustaining driver requiring stable light emission characteristic while it maintains low circuit loss like the series-resonant-type energy recovery circuit which is known to be a very effective method.  相似文献   

19.
A novel zero-voltage and zero-current-switching (ZVZCS) full-bridge pulse-width-modulated (PWM) converter is proposed to improve the previously proposed ZVZCS full-bridge PWM converters. By employing a simple auxiliary circuit with neither lossy components nor active switches, soft-switching of the primary switches is achieved. The proposed converter has many advantages such as simple auxiliary circuit, high efficiency, low voltage stress of the rectifier diode and self-adjustment of the circulating current, which make the proposed converter attractive for the high voltage and high power applications. The principles of operation and design considerations are presented and verified on the 4 kW experimental converter operating at 80 kHz.  相似文献   

20.
This work presents three improved plasma display panel (PDP) sustainers for reducing current stress and nonlinear effect due to parasitic and distributed components. In the paper, a useful cell equivalent circuit model is first introduced to describe the behavior of PDP cell operation, and a widely used sustainer is then reviewed, on which three improved ones are proposed. The proposed sustainers can reduce currents through the switches and nonlinear effect due to parasitic and distributed components along the energy-recovery circuit paths. Derivation and operating principle of the proposed sustainers are addressed in detail. In addition, their related gaseous discharge mechanism in PDP cells is also presented. Hardware measurements have verified the feasibility of the proposed sustainers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号